Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorShun-Nien Yangen
dc.contributor.author楊舜年zh_TW
dc.date.accessioned2021-06-16T02:48:00Z-
dc.date.available2017-07-21
dc.date.copyright2015-07-21
dc.date.issued2015
dc.date.submitted2015-07-16
dc.identifier.citation1. Barán, B., von Lücken, C. and Sotelo, A., 2005. Multi-objective pump scheduling optimisation using evolutionary strategies. Advances in Engineering Software, 36(1), 39-47.
2. Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J. and Marti, J., 2004. Optimal control of urban drainage systems. A case study, Control Engineering Practice 12.1, 1-9.
3. Chang, Y.M., Chang, L.C., Tsai, M.J., Wang, Y.F. and Chang, F.J., 2010. Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites, Hydrology and Earth System Sciences 15: 185-196.
4. Chang, Y.M., Chang, L.C., Tsai, M.J., Wang, Y.F. and Chang, F.J., 2011. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks, Hydrology and Earth System Sciences 14: 1309-1319.
5. Deb, K. and Goyal, M., 1996. A combined genetic adaptive search(GeneAS) for engineering design. Computer Science and Informatics 26(4),30-45
6. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197.
7. García, I.F., Díaz, J.R., Poyato, E C. and Montesinos, P., 2013. Optimal operation of pressurized irrigation networks with several supply sources. Water resources management, 27(8), 2855-2869.
8. Holland, J.H., 1975. Adaptation in Natural and Artificial Systems, Ann Arbor, MI: The University of Michigan Press.
9. Hsu, N.S., Huang, C.L. and Wei, C.C., 2013. Intelligent real-time operation of a pumping station for an urban drainage system, Journal of Hydrology, 489: 85-97.
10. Nicolini, M., 2011. Optimal pressure management in water networks: Increased efficiency and reduced energy costs. In Defense Science Research Conference and Expo (DSR), 2011 (pp. 1-4). IEEE.
11. Oraei Zare, S., Saghafian, B., and Shamsai, A., 2012. Multi-objective optimization for combined quality–quantity urban runoff control. Hydrology and Earth System Sciences, 16(12), 4531-4542.
12. Paul Guyer J., P.E., R.A., Fellow ASCE, Fellow AEI., 2012. Introduction to Pumping Stations for Water Supply Systems, Continuing Education and Development, Inc.
13. Sugita T., 2001. Development of Coolant-free Bearing for Large Capacity Pump and its Application to Pumping Stations. Proceedings of the Water Environment Federation, 16: 724-724.
14. Schardong, A., Simonovic, S.P. and Vasan, A., 2012. Multiobjective evolutionary approach to optimal reservoir operation. Journal of Computing in Civil Engineering, 27(2), 139-147.
15. Tamoto N., Yoshimoto K., Yoshida T. and Sakakibara T., 2008. Forecast-based operation method in minimizing flood damage in urban area, 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
16. Tang, Y., Zheng, G. and Zhang, S., 2014. Optimal control approaches of pumping stations to achieve energy efficiency and load shifting. International Journal of Electrical Power & Energy Systems, 55, 572-580.
17. Zhuan, X. and Xia, X., 2013. Optimal operation scheduling of a pumping station with multiple pumps. Applied Energy, 104, 250-257.
18. 張斐章、惠士奇,1998,灰色模糊序率動態規劃於水庫操作之應用,農業工程學報第44卷第1期 34-49頁。
19. 黃文政、袁倫欽、蔡安源,2004,水庫聯合供水與防洪操作系統之研究(2/3),行政院國家科學委員會專題研究計畫成果報告。
20. 李翁碩,2007,抽水站水位預測及系統操作之研究,國立臺灣大學生物環境系統工程所碩士論文。
21. 張斐章、張凱堯,2007,反傳遞模糊類神經網路於抽水站操作之應用,農業工程學報第53卷第1期 82-91頁。
22. 謝俊隆,2008,抽水站操作策略之研究-以中和抽水站為例,國立臺北科技大學土木與防災研究所碩士論文。
23. 黃景裕,2008,多標的遺傳演算法探討南化水庫最佳限水策略,淡江大學水資源及環境工程所碩士論文。
24. 經濟部水利署,2008,防洪抽水站智慧型防汛操作系統之研究(1/2)。
25. 張凱堯,2009,人工智慧於都市防洪排水系統控制之研究,國立臺灣大學生物環境系統工程學研究所博士論文。
26. 黃建霖,2009,人工智慧應用於都市排水系統抽水站水位預測與最佳即時操作之研究,國立臺灣大學土木工程學研究所學位論文。
27. 郭鑑儀,2009,非優勢排序遺傳演算法於多水庫系統颱洪操作之規劃,淡江大學水資源及環境工程學系碩士論文。
28. 藍佳文,2010,水庫防洪操作規線之制定-以翡翠水庫為例,國立臺灣海洋大學河海工程學系碩士論文。
29. 謝奇良,2010,水庫即時防洪預警模式之研究,國立臺灣海洋大學河海工程學系博士論文。
30. 經濟部水利署,2010,石門水庫運轉規線下限及嚴重下限提升改善可行性評估及規劃。
31. 黃建基,2011,防洪抽水站抽水機組最佳化組合之研究,國立臺灣海洋大學商船學系碩士論文。
32. 臺北市政府工務局水利工程處,2011,臺北市淹水潛勢圖製作及淹水預報系統建置工作。
33. 徐年盛、黃建霖、魏志強,2012,智慧型都市排水抽水站即時操作系統之研發,農業工程學報第58卷第3期 64-79頁。
34. 臺北市政府工務局水利工程處,2013,抽水站排水系統水位預報及抽水機組智慧型操作策略評估工作(1/2)。
35. 池宗翰,2013,翡翠水庫防洪操作規則之制定與比較,國立臺灣海洋大學河海工程學系碩士論文。
36. 臺北市政府工務局水利工程處,2014,抽水站排水系統水位預報及抽水機組智慧型操作策略評估工作(2/2)。
37. 經濟部水利署,2014,103年度石門水庫防洪、防淤及供水運轉系統維護及運轉操作諮詢。
38. 呂英睿,2014,智慧型抽水站排水系統水位預報及操作策略整合模式,國立臺灣大學生物環境系統工程所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54275-
dc.description.abstract都市快速的開發導致地面透水性降低、逕流量增大、集流時間減少等問題,如何能有效地將都市內水排至河川,抽水站成為都市防洪系統重要環節之一。目前現有抽水站操作規則僅根據前池水位決定抽水機組開啟數量,而臨場即時操作仍須依賴有經驗操作人員,無法真正根據操作規則進行操作;依抽水站實際操作時,需考量儘速將內水排至河川、抽水機組開啟數量、起抽水位(前池水位)、抽水機抽水效能(揚程)等因素。亦應避免抽水機組在短時間內啟閉操作頻繁。本研究同時考慮颱洪時期前池水位與揚程等因素對抽水量之影響,提出以非優勢排序遺傳演算法(NSGA-II)搜尋抽水站最佳化多目標操作規則。
本研究以臺北市之玉成抽水站為研究區域,建立玉成抽水站多目標之最佳化操作模式,應用NSGA-II特有之非優勢排序及擁擠距離比較進行多目標最佳化操作規則搜尋,並應用多目標函數值評定該染色體之優劣,以挑選柏拉圖峰之最佳解。本研究共建立兩種多目標最佳化模式,以探討不同目標函數設定所得之最佳操作規則的模擬結果表現。Model A之三目標函數為前池水位標準差總和最小、前池最高水位總和最小與抽水機操作次數總和最小;Model B則將Model A的第一個目標函數改為前池前後時刻水位差總和最小。以14場颱洪事件搜尋兩種模式之最佳操作規則,3場颱洪事件依兩種模式所得之最佳操作規則進行操作歷程模擬,並比較現有規則操作與歷史人為操作之成效。
結果顯示,Model A僅在第一個目標較現有操作規則差,其他兩個目標值皆優於現有操作規則;Model B則在三個目標值皆較現有操作規則優異,其改善率分別可達43.14%、2.79%及71.27%。Model A在操作次數較Model B頻繁,操作次數歷程明顯比Model B震盪,但此二模式皆比抽水站現有操作規則平穩,且可有效降低抽水機之操作次數。
整體而言,本研究所提出兩種抽水站多目標操作規則模式皆可避免抽水機在短時間內頻繁開啟,且模擬操作歷程與具豐富經驗之人員實際操作歷程近似,故本研究之最佳化多目標操作規則可應用於發展玉成抽水站自動化操作系統。
zh_TW
dc.description.abstractThe rapid urbanization in metropolitan areas causes less water infiltration, flashy floods and shorter rainfall concentration time. To effectively manage urban inundation problems, pumping stations play an important role for flood mitigation in urban areas. The operation rules for pumping stations have been designed to determine the number of duty pumps based only on the water levels of the front storage pool (FSP). Nevertheless, current pump operation depends mainly on experienced operators rather than on pump operation rules. In practice, pump operation needs to not only consider the discharge amount to rivers, the number of duty pumps, FSP water levels, as well as the water head difference of the surrounding river and the FSP but also avoid switching a pump on or off too frequently within a short time. Therefore, this study aims to propose an approach to deriving multi-objective optimal pump operation rules through the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) in consideration of the water head difference of the surrounding river and the FSP as an objective during typhoon periods for urban flood control.
The Yu-Cheng pumping station of Taipei City in Taiwan is the study area. The optimization search of the multi-objective pump operation rules is conducted by the non-dominated sorting and crowding-distance calculation of the NSGA-II, in which the objective functions identify good chromosomes in order to select the optimal pump operation rules from the Pareto-front. Two NSGA-II models with different objective functions are established to investigate the impacts of various objective functions on pump operation rules in this study. The objective functions of Model A include: (A1) minimize the standard deviation of FSP water levels at t+i and t+i+1; (A2) minimize the accumulated peak FSP water levels; and (A3) minimize the accumulated absolute differences on the numbers of duty pumps at t+i and t+i+1. Model B has the same objective functions as Model A except for the first objective function, which is modified to minimize the absolute differences of FSP water levels at t+i and t+i+1 in Model B. This study first adopts 14 typhoon and storm events to search the optimal pump operation rules for the two models and further applies 3 additional events to simulating the optimal pump operations of the two constructed models, for which the two optimization models are compared with current pump operation rules and historical operation.
Results indicate that Model A performs better than current pump operation rules, except for the first objective function (A1). Model B performs better than current pump operation rules in terms of all three objective functions, for which the improvement rates can achieve 43.14%, 2.79% and 71.27% for objective functions B1, B2 and B3, respectively. In addition, Model A produces more fluctuations than Model B, which means pumps are switched on and off more frequently by Model A. However Model A and Model B perform more stable than current pump operation rules and thus can effectively reduce the number of duty pumps for the whole operational period.
As a consequence, the derived multi-objective optimal pump operation rules can avoid switching a pump on or off too frequently within a short time, and it makes little difference in pump operations based on the optimal pump operation rules suggested by the proposed model and the experiences of operators. The multi-objective optimal pump operation rules of the propose models are considered superior to current pump operation rules, and therefore can provide useful information to operators at pumping stations for real-time urban flood control.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:48:00Z (GMT). No. of bitstreams: 1
ntu-104-R02622016-1.pdf: 8245393 bytes, checksum: 013387fc84036b4b069da99e52d0fa08 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 III
Abstract V
目錄 VIII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 抽水站操作模擬相關文獻 3
2.2 抽水站之預測及最佳化操作相關文獻 5
2.3 NSGA-II相關文獻 8
2.4 操作規則搜尋相關文獻 10
第三章 理論概述 12
3.1 遺傳演算法(GA) 12
3.2 遺傳演算法(GA)之演算流程 12
3.3 遺傳演算法(GA)之基本元素與運算子 13
3.4 非優勢排序遺傳演算法(NSGA-II) 19
3.5 非優勢排序遺傳演算法(NSGA-II)之演算流程 20
3.6 非優勢排序遺傳演算法(NSGA-II)之基本元素及運算子 22
第四章 研究案例 26
4.1 研究區域與資料概述 26
4.2 研究流程架構 30
4.3 玉成抽水站之操作流程 32
4.4 入流量推估 36
4.5 操作規則樣式選取 41
4.6 模式參數設定(NSGA-II) 48
4.6.1 目標函數 48
4.6.2 限制式 51
4.6.3 NSGA-II之參數設定 55
第五章 結果與討論 58
5.1 Model A(水位標準差最小、最高水位最小、操作次數最少) 58
5.2 Model B(前後時刻水位差最小、最高水位最小、操作次數最少) 73
5.3 綜合比較 86
第六章 結論與建議 91
6.1 結論 91
6.2 建議 93
第七章 參考文獻 95
附錄一 歷史事件操作紀錄歷程圖 100
附錄二 Model A最佳化操作歷程圖 109
附錄三 Model B最佳化操作歷程圖 118
dc.language.isozh-TW
dc.subject都市防洪zh_TW
dc.subject非優勢排序遺傳演算法(NSGA-II)zh_TW
dc.subject多目標最佳化搜尋zh_TW
dc.subject抽水站操作規則zh_TW
dc.subject防洪抽水站zh_TW
dc.subject都市防洪zh_TW
dc.subject多目標最佳化搜尋zh_TW
dc.subject抽水站操作規則zh_TW
dc.subject非優勢排序遺傳演算法(NSGA-II)zh_TW
dc.subject防洪抽水站zh_TW
dc.subjectmulti-objective optimal searchen
dc.subjectUrban flood controlen
dc.subjectPumping stationen
dc.subjectPump operation rulesen
dc.subjectNon-dominated Sorting Genetic Algorithm-II (NSGA-II)en
dc.subjectUrban flood controlen
dc.subjectPumping stationen
dc.subjectPump operation rulesen
dc.subjectmulti-objective optimal searchen
dc.subjectNon-dominated Sorting Genetic Algorithm-II (NSGA-II)en
dc.title建立颱洪時期抽水站智慧型最佳化操作規則zh_TW
dc.titleConstruct Intelligent Optimal Operation Rules for Pumping Stations
during Typhoon and Storm Periods
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張麗秋(Li-Chiu Chang),黃文政,陳永祥,張凱堯
dc.subject.keyword都市防洪,防洪抽水站,抽水站操作規則,多目標最佳化搜尋,非優勢排序遺傳演算法(NSGA-II),zh_TW
dc.subject.keywordUrban flood control,Pumping station,Pump operation rules,multi-objective optimal search,Non-dominated Sorting Genetic Algorithm-II (NSGA-II),en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2015-07-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
8.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved