請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54257
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 闕蓓德(Pei-Te Chiueh) | |
dc.contributor.author | Wei-Lun Tseng | en |
dc.contributor.author | 曾偉倫 | zh_TW |
dc.date.accessioned | 2021-06-16T02:47:05Z | - |
dc.date.available | 2020-09-02 | |
dc.date.copyright | 2015-09-02 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-16 | |
dc.identifier.citation | Abdullah, S. A., Nakagoshi, N. (2006) Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia. Landscape and Urban Planning 77(3), 263-275. Ahmadi Moghaddam, E., Ahlgren, S., Hulteberg, C., and Nordberg, Å. (2015) Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Processing Technology, 132, 74-82. Bare, J., Hofstetter, P., Pennington, D. and de Haes, H.U. (2000) Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment 5(6), 319-326. Bare, J. (2010) Life cycle impact assessment research developments and needs. Clean Technologies and Environmental Policy, 12(4), 341-351. Bernstad, A. (2012) Review of comparative LCAs of food waste management systems - Current status and potential improvements. Waste Management 32(12), 2439-2455. Chester, M., Pincetl, S. and Allenby, B. (2012) Avoiding unintended tradeoffs by integrating life-cycle impact assessment with urban metabolism. Current Opinion in Environmental Sustainability 4(4), 451-457. Clavreul, J., Guyonnet, D. and Christensen, T.H. (2012) Quantifying uncertainty in LCA-modelling of waste management systems. Waste Management 32(12), 2482-2495. Goldstein, B., Birkved, M., Quitzau, M. B. and Hauschild, M. (2013) Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environmental Research Letters 8(3), 14. Höhn, J., Lehtonen, E., Rasi, S. and Rintala, J. (2014) A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Applied Energy 113, 1-10. Holmes, T. and Pincetl, S. (2012) Urban Metabolism Literature Review. UCLA center for sustainable urban systems. Inostroza, L. (2014) Measuring urban ecosystem functions through Technomass'-A novel indicator to assess urban metabolism. Ecological Indicators 42, 10-19. ISO (2006a), Environmental management: Life cycle assessment - principles and framework. ISO 14040:2006(E). ISO (2006b), Environmental management: Life cycle assessment - requirements and guidelines. ISO 14044:2006(E). Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G. and Rosenbaum, R. (2003) IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 8(6), 324-330. Kennedy, C., Pincetl, S. and Bunje, P. (2011) The study of urban metabolism and its applications to urban planning and design. Environ Pollut 159(8-9), 1965-1973. Khalid, A., Arshad, M., Anjum, M., Mahmood, T. and Dawson, L. (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8), 1737-1744. Khoo, H. H., Lim, T. Z. and Tan, R. B. H. (2010) Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective. Science of the Total Environment 408(6), 1367-1373. Kim, D. H., Kim, S. H., Kim, H. W., Kim, M. S. and Shin, H. S. (2011) Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresource Technology 102(18), 8501-8506. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. and Lee, J. (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering 95(3), 271-275. Kim, M.H. and Kim, J. W. (2010) Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Science of the Total Environment 408(19), 3998-4006. Kim, S., Choi, K., Kim, J. O. and Chung, J. (2013) Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies. Biodegradation 24(6), 753-764. Lee, S., Choi, K., Osako, M. and Dong, J. I. (2007) Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea. Science of the Total Environment 387(1-3), 42-53. Liang, S. and Zhang, T. (2012) Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China. Waste Management 32(1), 220-225. Liu, X., Li, R., Ji, M. and Han, L. (2013) Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield. Bioresource Technology 146, 317-323. Lo, S. C., Ma, H. W. and Lo, S. L. (2005) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. Science of the Total Environment 340(1–3), 23-33. Lundie, S. and Peters, G. M. (2005) Life cycle assessment of food waste management options. Journal of Cleaner Production 13(3), 275-286. Nakakubo, T., Tokai, A. and Ohno, K. (2012) Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. Journal of Cleaner Production 32, 157-172. Pennington, D. W., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., Rydberg, T. and Rebitzer, G. (2004) Life cycle assessment Part 2: Current impact assessment practice. Environment International 30(5), 721-739. Pianosi, F., Sarrazin, F. and Wagener, T. (2015) A Matlab toolbox for Global Sensitivity Analysis. Environmental Modelling and Software 70, 80-85. Pincetl, S., Bunje, P. and Holmes, T. (2012) An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landscape and Urban Planning 107(3), 193-202. Roberts, K.G., Gloy, B. A., Joseph, S., Scott, N.R. and Lehmann, J. (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science and Technology 44(2), 827-833. Saer, A., Lansing, S., Davitt, N. H. and Graves, R. E. (2013) Life cycle assessment of a food waste composting system: environmental impact hotspots. Journal of Cleaner Production 52, 234-244. Song, T., Cai, J. m., Chahine, T., Xu, H. and Niu, F. Q. (2014) Modeling urban metabolism of Beijing city, China: with a coupled system dynamics: emergy model. Stochastic Environmental Research and Risk Assessment 28(6), 1511-1524. Tyagi, V. K. and Lo, S. L. (2013) Sludge: A waste or renewable source for energy and resources recovery? Renewable and Sustainable Energy Reviews 25, 708-728. Wäger, P.A. and Hischier, R. (2015) Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant. Science of the Total Environment 529, 158-167. Whiting, A. and Azapagic, A. (2014) Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 70, 181-193. Wolman, A., (1965) The metabolism of cities. Scientific American 213, 179-190 Xu, C. Q., Chen, W. and Hong, J. L. (2014) Life-cycle environmental and economic assessment of sewage sludge treatment in China. Journal of Cleaner Production 67, 79-87. Yang, D., Kao, W. T. M., Zhang, G. and Zhang, N. (2014) Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis. Ecological Modelling 272, 40-48. Yenigun, O. and Demirel, B. (2013) Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry 48(5-6), 901-911. Yoshida, H., Clavreul, J., Scheutz, C. and Christensen, T.H. (2014) Influence of data collection schemes on the life cycle assessment of a municipal wastewater treatment plant. Water Research 56, 292-303. Zhang, Y. (2013) Urban metabolism: A review of research methodologies. Environmental Pollution 178, 463-473. Zhang, Y., Liu, H. and Chen, B. (2013) Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing. Ecological Modelling 252, 106-113. Zhang, Y., Yang, Z. and Yu, X. (2009) Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities. Ecological Modelling 220(11), 1431-1442. 王文堯,“廚餘能源化處理之生命週期評估”,碩士論文,國立臺北大學自然資源與環境管理研究所,2007年 “北部地區廚餘厭氧消化試辦計畫”,計畫報告書,新北市環保局,2012年 “台肥公司農友牌產品系列成分及適用作物”,台灣肥料股份有限公司,2015年6月 http://www.taifer.com.tw/taifer/tw/careers/2014-09-04-07-12-58.html “污水下水道統計要覽”,中華民國內政部營建署下水道工程處,2013年 “污泥處理現況檢討及因應策略”,行政院環境保護署,2014年 馬鴻文、郭乃文、陳律言、闕蓓德、李育明,“永續都市的代謝分析、評估與管理”,專題研究計畫,行政院國家科學委員會,2007年 張家驥、洪臧燮、何瓊芳、謝哲隆、李元陞、陳奕宏、洪文宗、張慶源,“新一代垃圾資源永續管理方案芻議與評析”,經濟部工業局永續產業發展雙月刊,第48期,第51頁-第59頁,2010年2月 許桓瑜,“都市污水處理廠之生命週期評估”,碩士論文,國立臺灣大學環境工程學研究所,2014年 許富翔,“稻稈焙燒產製生質煤炭之生命週期評估”,碩士論文,國立臺灣大學環境工程學研究所,2011年 郭文健、鄭幸雄、鄭文騰,“廚餘高溫生物醱酵及養殖藻魚之綠色產業技術開發計畫”, 計畫報告書,行政院環境保護署環保科技育成中心計畫,2004年 陳高孝,“下水道普及率提升衍生污泥處理與管理之研究”,碩士論文,國立臺北科技大學環境規劃與管理研究所,2005年 經濟部能源局能源產業溫室氣體減量資訊網,電力排放係數表,2015年http://verity.erl.itri.org.tw/EIGIC/index.php?option=com_content view=article id=44 Itemid=28 萬皓鵬,“廢棄物能源應用”,國立成功大學能源科技概論簡報,工業技術研究院綠能與環境研究所新能源技術組,第23頁,2010年4月14日 詹才武,“前處理對污泥厭氧產氣之影響”,碩士論文,國立臺灣大學化學工程研究所,2006年 臺北市政府環境保護局,“轉廢為能:臺北市將規劃興建首座廚餘生質能廠,年產電千萬度,可減碳532萬公斤,可抵14座大安森林公園碳吸收量”臺,新聞稿,2015年4月23日http://goo.gl/ZWpVe6 駱尚廉、蕭代基,“環境經濟分析”,臺北市曉園出版社,2007年 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54257 | - |
dc.description.abstract | 人類活動往往伴隨著廢棄物數量的增長,都會區尤其如此;然而,這些廢棄物中往往包含些都市生質廢棄物,例如廚餘,因此都市生質廢棄物再利用為能資源或視為廢棄物將會對都會區造成不同的影響。基於上述所說,本研究分為三部分:首先,本研究運用網絡型都市代謝概念加以分析臺北市都市生質廢棄物能(包含廚餘、污泥與垃圾)能資源轉化處理與再利用,並建立都市代謝效率與衝擊指標,用以評價都市生質廢棄物能資源轉化處理與再利用對於2004年與2013年臺北市都市代謝之影響;接續,本研究選擇廚餘作為對象,並且設定四種廚餘轉化再利用情境進行生命週期評估;最後,本研究提出新都市代謝衝擊指標用以改善原指標之缺點。 結果顯示臺北市近十年代謝效率指標上升(都市資源之使用效率提升),但同時代謝衝擊指標亦上升,導因於都市人口與都市生質廢棄物數量的上升。接續,本研究選擇廚餘進行生命週期評估,並且依照臺北市現行廚餘能資源轉化再利用現況設計四種情境,分別為廚餘轉製生質酒精(情境1)、廚餘堆肥處理(情境2)、廚餘先行高溫蒸煮前處理後堆肥(情境3)、廚餘與污泥行厭氧共消化(情境4),其結果顯示四種情境之總環境衝擊大小依序為情境1(4.11 mPt)、情境2(-2.83 mPt)、情境4(-29.96 mPt)、情境3(-64.59 mPt),從評估結果可以看出廚餘轉化再利用情境最佳方案為情境3,主要係因其廚餘高溫蒸煮後堆肥產物之有機肥料替代效益量大所致;最後,本研究提出一都市代謝衝擊指標Mwj(LCA),乃由於原先都市代謝衝擊指標無法反映出都市所承受之真實衝擊,畢竟其環境衝擊是以質量做計算;反之,新都市代謝衝擊指標Mwj(LCA)能將都市生質廢棄物數量(fRj)與都市生質廢棄物能資源轉化技術造成之排放量(yj)轉化為總環境衝擊(single score),可完整呈現一都市之代謝衝擊指標。 本研究以網絡型都市代謝探討城市物資與能源之流動,並結合生命週期評估方法量化廚餘處理之環境衝擊,且建立一新都市代謝衝擊指標,成功連結廚餘廢棄物能資源化與都市代謝之關聯性;綜合以上結果顯示,此整合研究方式可顯現都市廢棄物處理及再利用方式對於都市代謝之影響,進而能輔助政策之制定。 | zh_TW |
dc.description.abstract | Anthropogenic activities have increased waste volumes dramatically, particularly in urban environments. This waste often includes biodegradable matter, such as food scraps. Treating this matter as a resource or as waste will result in different consequences in an urban system. With that in mind, this research can divided into three parts: 1) use the concept of network Urban Metabolism (UM) in order to analyze the influence of recycling and reuse of urban bio-waste, including food waste (FW), municipal sewage sludge (MSS) and municipal solid waste (MSW) to Taipei City in 2004 and 2013 and establish UM efficiency and impact indicators to assess it, 2) choose FW as target and set four FW treatment scenarios for life cycle assessment (LCA), 3) propose new UM impact indicator in order to improve on the existing system. The network UM results showed that the total metabolic efficiency in Taipei rose over the last decade, which means the resource use efficiency in Taipei City has increased. However, the total metabolic impacts also increased, as a result of growth in population and bio-waste. This study chose FW for LCA and set four treatment scenarios based on current treatment in Taipei: 1) transforming FW into bio-ethanol, 2) direct composting treatment, 3) composting after pre-treatment of high temperature cooking, 4) anaerobic co-digestion with SWS. The LCA results showed that the order of environmental impact was scenario 1 (4.11 mPt), scenario 2 (-2.83 mPt), scenario 4 (-29.96 mPt), and scenario 3 (-64.59 mPt). Scenario 3 was the best plan because of the benefit of organic fertilizer. Additionally, this study proposes the new UM indicator MWj(LCA), for the original one cannot reflect the actual impact sustained by a city since all environmental impacts were calculated in mass units. MWj(LCA) , on the other hand, can transform both the amount of bio-waste and the impact from different FW treatment into a single, final environmental impact score. In conclusion, this study used the concept of network UM to inspect the material and energy flow in a city and incorporated the LCA method into UM to quantify the environmental impact of four FW treatment scenarios. Most importantly, this study proposed a new UM indicator MWj(LCA) so that the relation between UM and bio-waste(FW) conversion can be connected. And the result showed that under such integrated method can actually reflect the influence of urban bio-waste to the city, which can be a significant tool for policy decision. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:47:05Z (GMT). No. of bitstreams: 1 ntu-104-R02541208-1.pdf: 2753411 bytes, checksum: 4323bae0a0c0dcc8df412c1e29ad615a (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要 I Abstract III 總目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究流程與論文架構 2 第二章 文獻回顧 5 2.1都市代謝 5 2.1.1質量平衡法及其指標探討 6 2.1.2能值分析法及其指標探討 8 2.1.3投入產出法 10 2.1.4未來發展 11 2.2都市生質廢棄物處理再利用技術 12 2.2.1廚餘能資源轉化再利用方式與技術 12 2.2.2污泥能資源轉化再利用方式與技術 16 2.2.3垃圾能資源轉化再利用方式與技術 17 2.3都市生質廢棄物處理再利用之生命週期評估 19 2.3.1生命週期評估方法介紹 19 2.3.2生命週期衝擊評估模式介紹 21 2.3.3廚餘能資源轉化再利用之生命週期評估 24 2.3.4生命週期評估之敏感度分析與不確定性分析 26 2.4都市代謝結合生命週期評估 28 第三章 研究方法 30 3.1區域背景 31 3.1.1廚餘 32 3.1.2污泥 34 3.1.3垃圾 37 3.2網絡型都市代謝 38 3.2.1網絡型都市代謝 38 3.2.2臺北市都市代謝指標計算 39 3.3廚餘處理再利用生命週期評估 47 3.3.1目標與範疇界定 47 3.3.2盤查清單 53 3.3.2敏感度分析 65 3.3.3不確定性分析 66 3.3.4 全球暖化潛勢指標 67 3.4生命週期評估結合都市代謝 67 第四章 結果與討論 69 4.1臺北市網絡型都市代謝指標 69 4.1.1代謝規模指標 69 4.1.2代謝強度指標 71 4.1.3代謝效率指標 71 4.1.4代謝衝擊指標 72 4.2廚餘能資源轉化再利用技術之生命週期評估結果 74 4.2.1廚餘轉製生質酒精之生命週期評估結果 74 4.2.2廚餘堆肥處理之生命週期評估結果 76 4.2.3廚餘高溫蒸煮後堆肥處理之生命週期評估結果 79 4.2.4廚餘加濕調勻後與污泥行厭氧共消化之生命週期評估結果 82 4.2.5四種廚餘處理再利用情境之比較 85 4.2.6敏感度分析 90 4.2.7不確定性分析 92 4.2.8全球暖化潛勢指標結果探討 94 4.3 生命週期評估結合都市代謝之結果討論 96 第五章 結論與建議 98 5.1結論 98 5.2建議 102 參考文獻 105 附錄 112 附錄A 臺北市網絡型都市代謝盤查清單 112 附錄B 廚餘生命週期評估盤查清單 117 附錄C 化學肥料區分一覽表 131 | |
dc.language.iso | zh-TW | |
dc.title | 臺北市都市生質廢棄物之都市代謝研究 | zh_TW |
dc.title | Urban Metabolism of Bio-Waste in Taipei, Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 馬鴻文(Hwong-Wen Ma),駱尚廉(Shang-Lien Lo) | |
dc.subject.keyword | 都市生質廢棄物,網絡型都市代謝,都市代謝評價指標,生命週期評估,不確定性分析,敏感度分析, | zh_TW |
dc.subject.keyword | urban bio-waste,network urban metabolism,urban metabolism indicator,life cycle assessment,sensitivity analysis,uncertainty analysis, | en |
dc.relation.page | 133 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。