Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54218
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘文涵(Wen-Harn Pan 潘文涵)
dc.contributor.authorPei-Chen Chuen
dc.contributor.author褚霈貞zh_TW
dc.date.accessioned2021-06-16T02:45:14Z-
dc.date.available2016-09-14
dc.date.copyright2015-09-14
dc.date.issued2015
dc.date.submitted2015-07-20
dc.identifier.citationBain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 2009; 58: 2429-43.
Bauer TM, Jiga LP, Chuang J-J, Randazzo M, Opelz G, Terness P. Studying the immunosuppressive role of indoleamine 2, 3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transplant Int 2005; 18: 95-100.
Beer CT, Dickens F, Pearson J. The aromatization of hydrogenated derivatives of
benzoic acid in animal tissues. Biochem J 1951; 48: 222-37.
Bray GA, Popkin BM. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes: health be damned! Pour on the sugar. Diabetes Care 2014; 37: 950-6.
Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 2010; 341: c4229.
DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58: 773–95.
DJ Cottle, C Romero. Improving pasture intake predictions by variable weighting of
plant marker concentrations. Anim Feed Sci Technol 2014; 187: 30–43.
Drogan D, Dunn WB, Lin W, Buijsse B, Schulze MB, Langenberg C, et al. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem 2015; 6: 487-97.
Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013; 62: 639-48.
Gromski PS, Xu Y, Kotze HL, Correa E, Ellis DI, Armitage EG, et al. Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 2014; 4: 433-52.
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103: 137-49.
Helmstädter A. Beans and diabetes: Phaseolus vulgaris preparations as
antihyperglycemic agents. J Med Food 2010; 13: 251-4.
Herder C, Baumert J, Zierer A, Roden M, Meisinger C, Karakas M et al. Immunological and cardiometabolic risk factors in the prediction of type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study. PLoS ONE 2011; 6:e19852.
Herrmann KM. The shikimate pathway. Early steps in the biosynthesis of aromatic compouinds. Plant Cell 1995; 7: 907-19.
Hrydziuszko, O, Viant, M.R. Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline. Metabolomics 2011; 8: 161–74.
Leibach FH, Ganapathy V. Peptide transporters in the intestine and the kidney. Annu Rev Nutr 1996; 16: 99–119.
Longo-Mbenza B, Muaka M. The protective effect of phaseolus vulgaris on cataract in type 2 diabetes: a profitable hypothesis. Med Hypothesis Discov Innov Ophthalmol 2013; 2: 105-8.
Menni C, Fauman E, Erte I, Perry JR, Kastenmüller G, Shin SY, Petersen AK, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 2013; 62: 4270-6.
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched -chain amino acidrelatedmetabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9: 311–26.
Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ 2011; 343: d7163.
Padberg I, Peter E, González-Maldonado S, Witt H, Mueller M, Weis T, et al. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One 2014; 17; 9:e85082.
Pero RW. Health consequences of catabolic synthesis of hippuric acid in humans. Curr Clin Pharmacol 2010; 5: 67-73.
Peters AL, Davidson MB, Schriger DL, Hasselblad V. Meta-analysis Research
Group on the Diagnosis of Diabetes Using Glycated Hemoglobin Levels. A clinical approach for the diagnosis of diabetes mellitus: an analysis using glycosylated hemoglobin levels. JAMA 1996; 276: 1246–52.
Romaguera D, Norat T, Wark PA, Vergnaud AC, Schulze MB, van Woudenbergh GJ,
et al. Consumption of sweet beverages and type 2 diabetes incidence in European
adults: results from EPIC-InterAct. Diabetologia 2013; 56: 1520-30.
Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, et al. Metabolic
profiling of the human response to a glucose challenge reveals distinct axes of
insulin sensitivity. Mol Syst Biol 2008; 4: 214.
Stefan N, Fritsche A, Weikert C, Boeing H, Joost HG, Häring HU, et al. Plasma
fetuin-A levels and the risk of type 2 diabetes. Diabetes 2008; 57: 2762–7.
Steuer R. Review: on the analysis and interpretation of correlations in metabolomics
data. Brief Bioinform 2006, 7: 151-8.
Steuer R, Morgenthal K, Weckwerth W, Selbig J. A gentle guide to the analysis of metabolomic data. Methods Mol Biol. 2007; 358; 105–26.
Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 2010; 5: e13953.
Swellam M, Sayed Mahmoud And M, Abdel-Fatah Ali A. Clinical implications of adiponectin and inflammatory biomarkers in type 2 diabetes mellitus. Dis Markers 2009; 27: 269–278.
Tan GY, Li XJ, Zhang HY. Antidiabetic components in vegetables and legumes.
Molecules 2008; 13: 1189–94.
Toromanović J, Kovac-Besović E, Sapcanin A, Tahirović I, Rimpapa Z, Kroyer G, et al. Urinary hippuric acid after ingestion of edible fruits. Bosn J Basic Med Sci 2008; 8: 38-43.
Virag L. Structure and function of poly (ADP-ribose) polymerase-1: role in oxidative stress-related pathologies. Curr Vasc Pharmacol 2005; 3: 209-14.
Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17: 448-53.
Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012; 8: 615.
Weng LC, Lee NJ, Yeh WT, Ho LT, Pan WH. Lower intake of magnesium and dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J Formos Med Assoc 2012; 111: 651-9.
Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res 2009; 37: 652–60.
Zamora-Ros R, Forouhi NG, Sharp SJ, González CA, Buijsse B, Guevara M, et al. The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in European populations: the EPIC-InterAct study. Diabetes Care 2013; 36: 3961-70.
Zhang J, Xue C, Zhu T, Vivekanandan A, Pennathur S, Ma ZA, et al. A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1. PLoS One 2013; 27: e83509.
Zhao X, Fritsche J, Wang J, Chen J, Rittig K, Schmitt-Kopplin P, et al. Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 2010; 6: 362-374.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54218-
dc.description.abstract背景:
傳統評估個體罹患第二型糖尿病風險時,多採用年齡、性別、家族罹病史、空腹血糖值、糖化血色素及代謝症候群相關因子。然而使用這些傳統風險因子之評估模型,對於糖尿病未來風險之預測,並不完善。隨著代謝體學的發展與進步,其能提供低分子量(<1000 Da)代謝體詳細的背景資訊,以協助了解代謝物與目標疾病之致病機轉間的相關性。在本論文研究,我們以使用非目標性方法搜尋與第二型糖尿病罹病相關的代謝物,試圖改善第二型糖尿病的風險預測模型。
材料與方法:
本研究為嵌入型病例對照設計,研究對象來自於CVDFACTS (the CardioVascular Disease risk FACtor Two-township Study,竹東及朴子地區心臟血管疾病長期追蹤研究),為一個以探討及評估心臟血管相關疾病為研究目的之社區型長期追蹤研究。我們選取50個第二型糖尿病之新罹病患者,並以年齡、性別做配對選出50個健康對照組。使用單變數羅吉斯迴歸分析,搭配共變量校正(年齡、性別、身體質量指數及血清血糖值),篩選出可能之第二型糖尿病預測因子。多變數羅吉斯迴歸分析及正向逐步選取法,則用來產生第二型糖尿病風險評估之最佳模型。
結果:
共有39個代謝物被篩選為與第二型糖尿病有關之可能因子。經正向逐步選取法,挑出6個候選代謝物,並搭配2個傳統風險因子(身體質量指數及血清血糖值),為最佳的第二型糖尿病風險預測組合。與傳統風險因子預測模型(AUCs= 0.89 (95% CI = 0.82-0.96)比較,本研究所找出的模型(AUCs= 0.99, 95%CI = 0.98 -1.00)具有顯著較好的第二型糖尿病預測能力(p-value=0.0018)。
結論:
經代謝體資料庫比對後,本研究發現5種代謝物(包含: 陽性電場之馬尿酸、陰性電場之馬尿酸、C16H27O6P、烷烴類衍生物、植物生物鹼及植物類黃酮),組合此5種代謝物以及2個傳統風險預測因子(包含: 身體質量指數及血清血糖值)可提供良好的第二型糖尿病預測能力(AUCs= 0.99, 95%CI = 0.98-1.00),且相對於傳統風險預測模型有顯著的改善(p-value =0.0018)。
zh_TW
dc.description.abstractBackground:
Traditional risk assessment to estimate of type 2 diabetes (T2D) risk for individual often include predictors, such as age, gender, family history, fasting plasma glucose, glycated hemoglobin (HbA1C) and metabolic syndrome components. However, it is not altogether satisfactory in term of predictability. With the development of metabolomics technology, it is likely to discover low-molecular-weight (<1000 Da) metabolites associated with disease etiology. Therefore, we aimed to identify novel metabolites for T2D with non-targeted metabolomics approach and with the goal to improve T2D risk prediction panel.
Materials and Methods:
We designed a nested case-control study, taking advantage of the data from CVDFACTS (the CardioVascular Disease risk FACtor Two-township Study), a community-based longitudinal cohort study designed to study risk factors and evaluation of cardio-metabolic diseases in Taiwan. We selected 50 new-onset T2D and 50 age and gender matched controls who were chosen from those who did not develop T2D. Their stored baseline fasting serums were used for metabolomics study. Univariate logistic regression with covariates adjustment (age, sex, BMI and serum glucose) was used to screen potential determinants. Multivariate logistic regression was used to generate risk assessment model for predicting T2D risk.
Results:
A total of 39 peaks were initially screened out as potential metabolites. Then by the forward stepwise selection, 6 candidate peaks in combination with 2 traditional risk factors (BMI and serum glucose) were selected into the T2D risk prediction panel. With the comparison to traditional risk factors model (AUCs=0.89 (95% CI = 0.82-0.96), our model performed significantly better in terms of ROC result (AUCs= 0.99, 95%CI=0.98-1.00) for T2D prediction (p-value =0.0018).
Conclusion:
After the identification on metabolomics database, we have identified 5 metabolites: hippuric acid in positive mode, hippuric acid in negative mode, C16H27O6P, alkane derivative, plant alkaloid and plant flavonoid together with 2 traditional risk factors (BMI and serum glucose). This diabetes risk prediction panel can distinguish future T2D cases from healthy controls with an AUC of 0.99 (95%CI=0.98-1.00). A significant improvement is achieved compared to the traditional risk factor panel (p-value =0.0018).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:45:14Z (GMT). No. of bitstreams: 1
ntu-104-R02849003-1.pdf: 1075573 bytes, checksum: 82624c8dda4710b3063a7954f837f9e4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書……………………………………………………………………..Ⅰ
致謝…………………………………………………………………………………..Ⅱ
中文摘要……………………………………………………………………………..Ⅲ
Abstract………………………………………………………………………………Ⅴ
Introduction……………………………………………………………………………1
I. Background of T2D………………………………………………………….1
II. Background of Metabolomics……………………………………………….2
III. Previous metabolomics studies of T2D……………………………………...3
Materials and Methods………………………………………………………………...5
I. Research design and participants……………………………………………5
II. Sample storage………………………………………………………………6
III. Metabolomics measurements………………………………………………..6
IV. Data processing……………………………………………………………...7
V. Analytical strategy…………………………………………………………...8
Results………………………………………………………………………………..11
Discussions…………………………………………………………………………...14
Reference……………………………………………………………………………..21
Tables………………………………………………………………………………...27
Figures………………………………………………………………………………..34
Appendices…………………………………………………………………………...36
dc.language.isoen
dc.subject代謝體學zh_TW
dc.subject預測zh_TW
dc.subject第二型糖尿病zh_TW
dc.subject非目標性代謝體學方法zh_TW
dc.subject第二型糖尿病zh_TW
dc.subject非目標性代謝體學方法zh_TW
dc.subject預測zh_TW
dc.subject代謝體學zh_TW
dc.subjectMetabolomicsen
dc.subjectnon-targeted metabolomics approachen
dc.subjectpredictionen
dc.subjectMetabolomicsen
dc.subjectType 2 Diabetesen
dc.subjectnon-targeted metabolomics approachen
dc.subjectType 2 Diabetesen
dc.subjectpredictionen
dc.title以非目標性代謝體方法學搜尋與第二型糖尿病發生風險相關之血清代謝產物zh_TW
dc.titleIdentification of Serum Metabolites Associated with Development of Type 2 Diabetes by Non-targeted Metabolomics Approachen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor郭柏秀(Po-Hsiu Kuo 郭柏秀)
dc.contributor.oralexamcommittee楊欣洲(Hsin-Chou Yang 楊欣洲),陳保中(Pau-Chung Chen 陳保中)
dc.subject.keyword第二型糖尿病,代謝體學,預測,非目標性代謝體學方法,zh_TW
dc.subject.keywordType 2 Diabetes,Metabolomics,prediction,non-targeted metabolomics approach,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2015-07-20
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved