請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54211完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳湘鳳 | |
| dc.contributor.author | Yu-Jui Lin | en |
| dc.contributor.author | 林佑叡 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:44:54Z | - |
| dc.date.available | 2020-07-21 | |
| dc.date.copyright | 2015-07-21 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-20 | |
| dc.identifier.citation | Aiello, G. L., & Valenza, M. A. (1984). Psychophysical response to electrocutaneous stimulation. IEEE Transactions on Biomedical Engineering, 31(8), pp. 558–560.
Bau, O., Poupyrev, I., Israr, A., & Harrison, C. (2010, October). Teslatouch: electrovibration for touch surfaces. Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, New York, NY, pp. 283–292. Block, H., Kelly, J. P., Qin, A., & Watson, T. (1990). Materials and mechanisms in electrorheology. Langmuir, 6(1), pp. 6–14. Brummer, S. B., & Turner, M. J. (1975). Electrical stimulation of the nervous system: the principle of safe charge injection with noble metal electrodes. Bioelectrochemistry and Bioenergetics, 2(1), pp. 13–25. Butikofer, R., & Lawrence, P. D. (1978). Electrocutaneous nerve stimulation-i: model and experiment. IEEE Transactions on Biomedical Engineering, 25(6), pp. 526–531. Calder, B. E. (1983). Design of a force-feedback touch-inducing actuator for teleoperator robot control. B.S. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering and Dept. of Electrical Engineering and Computer Science. Chodack, J., & Spampinato, P. (1991). Spacesuit glove thermal micrometeoroid garment protection versus human factors design parameters. SAE Technical Paper. Retrieved from http://papers.sae.org/911383/ on 7/17/2015. Folgheraiter, M., Gini, G., & Vercesi, D. (2008). A multi-modal haptic interface for virtual reality and robotics. Journal of Intelligent and Robotic Systems, 52(3-4), pp. 465–488. Goldstein, E. (2009). Sensation and perception. Cengage Learning. Goto, M., & Takemura, K. (2013). Tactile bump display using electro-rheological fluid. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 4478–4483. Grimnes, S. (1983). Electrovibration, cutaneous sensation of microampere current. Acta Physiologica Scandinavica, 118(1), pp. 19–25. Hashimoto, Y., Nakata, S., & Kajimoto, H. (2009). Novel tactile display for emotional tactile experience. Proceedings of the International Conference on Advances in Computer Enterntainment Technology, New York, NY, pp. 124–131. Hayward, V., & Cruz-Hernandez, M. (2000). Tactile display device using distributed lateral skin stretch. Proceedings of the Haptic Interfaces for Virtual Environment and Teleoperator Systems Symposium, 69, pp. 1309–1314. Inoue, K., Kato, F., & Lee, S. (2009). Haptic device using flexible sheet and air jet for presenting virtual lumps under skin. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, pp. 1749–1754. Jansen, Y., Karrer, T., & Borchers, J. (2010). Mudpad: tactile feedback and haptic texture overlay for touch surfaces. ACM International Conference on Interactive Tabletops and Surfaces, New York, NY, USA, pp. 11–14. Johansson, R. S., & Vallbo, Å. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, 6, pp. 27–32. Johnsen, E. G., & Corliss, W. R. (1971). Human factors applications in teleoperator design and operation. Wiley-Interscience New York. Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P., & Tompkins, W. J. (1991). Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering, 38(1), pp. 1–16. Kaczmarek, K. A., Webster, J. G., & Radwin, R. G. (1992). Maximal dynamic range electrotactile stimulation waveforms. IEEE Transactions on Biomedical Engineering, 39(7), pp. 701–715. Kajimoto, H., Kanno, Y., & Tachi, S. (2006, July). Forehead electro-tactile display for vision substitution. Proc. EuroHaptics. Kajimoto, H., Kawakami, N., Maeda, T., & Tachi, S. (2004). Electro-tactile display with tactile primary color approach. Proceedings of International Conference on Intelligent Robots and Systems, Tokyo, 10. Kajimoto, H., Kawakami, N., & Tachi, S. (2003). Psychophysical evaluation of receptor selectivity in electro-tactile display. Proceeding of 13th International Symposium on Measurement and Control in Robotics. Retrieved from http://files.tachilab.org/publications/intconf2000/kajimoto200312ISMCR.pdf Kajimoto, H., Suzuki, M., & Kanno, Y. (2014). Hamsatouch: tactile vision substitution with smartphone and electro-tactile display. Proceeding of CHI EA Extended Abstracts on Human Factors in Computing Systems, New York, USA, pp. 1273–1278. Kyung, K.-U., Son, S.-W., Kwon, D.-S., & Kim, M.-S. (2004a). Design of an integrated tactile display system. IEE International Conference on Robotics and Automation, 1, pp. 776–781. Liu, Y., Davidson, R., & Taylor, P. (2005). Touch sensitive electrorheological fluid based tactile display. Smart Materials and Structures, 14(6), pp. 1563–1568. Marcus, P. (2006). Electrotactile feedback system using psychophysical mapping functions. Ph.D. Thesis, University of Arizona. Massie, T. H. (1993). Design of a three degree of freedom force-reflecting haptic interface. B.S. Thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science. Melen, R. D., & Meindl, J. D. (1971). Electrocutaneous stimulation in a reading aid for the blind. IEEE Transactions on Biomedical Engineering, 18(1), pp. 1–3. Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., & Tachi, S. (2007). Gravity grabber: wearable haptic display to present virtual mass sensation. ACM SIGGRAPH Emerging Technologies, 8. M.S. Sanders, & E.J. McCormick. (1998). Human factors in engineering and design. Industrial Robot: An International Journal, 25(2), pp. 153–153. Nakamura, T., & Yamamoto, A. (2013). Multi-finger electrostatic passive haptic feedback on a visual display. World Haptics Conference, Daejeon, pp. 37–42. Nishimura, N., Leonardis, D., Solazzi, M., Frisoli, A., & Kajimoto, H. (2014). Wearable encounter-type haptic device with 2-dof motion and vibration for presentation of friction. Haptics Symposium, Houston, TX, pp. 303–306. Patrick, N. J. (1990). Design, construction, and testing of a fingertip tactile display for interaction with virtual and remote environments. M.S. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering. Pfeiffer, E. A. (1968). Electrical stimulation of sensory nerves with skin electrodes for research, diagnosis, communication and behavioral conditioning: a survey. Medical and biological engineering, 6(6), pp. 637–651. Sato, K., Igarashi, E., & Kimura, M. (1991). Development of non-constrained master arm with tactile feedback device. IEEE Fifth International Conference on Advanced Robotics, Pisa, Italy, 1, pp. 334–338. Saunders, F. A. (1983). Information transmission across the skin: high-resolution tactile sensory aids for the deaf and the blind. International Journal of Neuroscience, 19(1-4), pp. 21–28. Saunders, F., & Collins, C. C. (1971). Electrical stimulation of the sense of touch. The Journal of Biomedical Systems, 2(7). Sherrick, C. E. (1985). Touch as a communicative sense: introduction. The Journal of the Acoustical Society of America, 77(1), pp. 218–219. Shimoga, K. B. (1993). A survey of perceptual feedback issues in dexterous telemanipulation. ii. finger touch feedback. Virtual Reality Annual International Symposium, Seattle, WA, pp. 271–279. Solomonow, M., & Preziosi, M. (1982). Electrotactile sensation and pain thresholds and ranges as a function of body site, laterality, and sex. IEEE Transactions on Biomedical Engineering, New York, NY, 29, pp. 606–606. Stanley, A. A., Gwilliam, J. C., & Okamura, A. M. (2013, April). Haptic jamming: a deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. World Haptics Conference, Daejeon, pp. 25–30. Stone, R. J. (1991). Advanced human-system interfaces for telerobotics using virtual reality and telepresence technologies. IEEE Fifth International Conference on Advanced Robotics, Pisa, Italy, pp. 168–173. Strong, R. M., & Troxel, D. (1970). An electrotactile display. IEEE Transactions on Man-Machine Systems, 11(1), pp. 72–79. Szeto, A. Y., & Saunders, F. A. (1982). Electrocutaneous stimulation for sensory communication in rehabilitation engineering. IEEE Transactions on Biomedical Engineering, 29(4), pp. 300–308. Tang, H., & Beebe, D. J. (1998). A microfabricated electrostatic haptic display for persons with visual impairments. IEEE Transactions on Rehabilitation Engineering, 6(3), pp. 241–248. Yamamoto, A., Nagasawa, S., Yamamoto, H., & Higuchitokyo, T. (2004). Electrostatic tactile display with thin film slider and its application to tactile tele-presentation systems. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, New York, NY, pp.209–216. Yoshimoto, S., Kuroda, Y., Imura, M., & Oshiro, O. (2011). Development of a spatially transparent electrotactile display and its performance in grip force control. Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Boston, MA, pp. 3463–3466. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54211 | - |
| dc.description.abstract | 傳統提供觸覺回饋的裝置多數使用機械式的致動器,不僅需要耗費較多的能量且裝置體積不易微小化,提供振動或是力回饋時也可能伴隨著裝置共振的現象,降低觸感的真實性與使用者經驗。然而,與傳統提供回饋方式不同的電觸覺回饋能解決上述問題,且藉由不同刺激波形能提供不同觸覺感受。本研究利用電流刺激的方式來提供觸覺回饋,建立了一個電觸覺回饋系統,藉由Arduino開發版控制升壓電路中的數控電阻,因而得到不同電壓的輸出,並建立一個馬達H橋電路,用來控制刺激電流的流向,達到陽極、陰極以及雙相的電觸覺回饋。此外,本研究也建立一個由微型喇叭所構成的機械觸覺原型裝置系統,藉由輸入人類無毛皮膚敏感振動頻率與電壓,達到不同觸覺感受。
針對電觸覺極性與頻率分辨的部分進行使用者測試,結果發現極性正確分辨率達到80%,表示受試者幾乎能感受電觸覺極性的不同會有不同的感受;除了頻率50Hz之外,頻率正確分辨率大於70%,表示受試者幾乎能感受電觸覺頻率的差異。 本研究也進行電觸覺以及機械觸覺的感受評分測試,測試受試者對於這兩種回饋的各項感受,並調整機械振動的輸入頻率以及電壓大小,找尋機械觸覺回饋與電觸覺回饋摸起來相似之參數。透過這些參數能提供設計者設計出不同感受之電觸覺或是機械觸覺回饋裝置。 | zh_TW |
| dc.description.abstract | Traditional tactile feedback devices not only take more energy but also occupy more space. When these devices provide force feedback, devices may also be associated with resonance and reduce natural feeling and user experience. However, electro-tactile feedback is different from mechanical-tactile feedback, and it can solve the above problems. By using different stimulus waveforms, electro-tactile feedback can provide different tactile sensations. In this study, we use electrical stimulation to provide tactile feedback and create an electro-tactile feedback prototype device. Using Arduino to control the digit-control resistance in booster circuit, this prototype can output different voltages. We also establish an H-bridge circuit for controlling the flow of stimulation, and provide an anode, a cathode and a biphase electro-tactile feedback.
In addition, this study also established a mechanical haptic prototype device consisting of a micro-speaker, with the input of human glabrous sensitive vibration frequencies and voltages to achieve different tactile sensations. This study also conducted a user test for electrical polarity and frequency resolution. Results showed that subjects can distinguish different polarities up to 80% of accuracy. It means that with different electrical polarity, subjects have different electro-tactile feedback. Except the frequency of 50Hz, subjects can distinguish different frequency more than 70% of accuracy. It means that with different electricalfrequencies, subjects have different electro-tactile feedback. This study also conducted electro-tactile and mechanical-tactile feedback rating test to test the subjects’s feelings for both feedback. By adjusting the input frequencies of the mechanical vibrations and voltage magnitudes, we found the parameters which mechanical tactile feedback is similar to the electro-tactile feedback. Designer can design the electro-tactile or mechanical-tactile feedback devices which provide different feelings through these parameters. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:44:54Z (GMT). No. of bitstreams: 1 ntu-104-R02522601-1.pdf: 4851323 bytes, checksum: 70a70df615dee5b6420063bb9efae8e8 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 II
摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 介紹 1 1.1 研究背景與動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 人類無毛皮膚觸覺敏感受器與頻率 3 2.2 力回饋與觸覺回饋裝置 6 2.2.1 馬達 6 2.2.2 壓電材料 8 2.2.3 喇叭 10 2.2.4 氣動刺激 10 2.2.5 智慧型流體 14 2.2.6 靜電刺激 16 2.2.7 機械式與靜電式觸覺回饋裝置文獻回顧小結 18 2.3 電觸覺相關研究 19 2.3.1 電極面積與材質 20 2.3.2 電觸覺波形與電流大小 21 2.3.3 皮膚特性 21 2.3.4 電觸覺痛覺與感覺閥值 22 2.3.5 電觸覺研究與裝置 23 2.3.6 電觸覺文獻回顧小結 28 第三章 系統設計 29 3.1 電觸覺系統 29 3.1.1 設備及材料 31 3.1.2 Arduino控制板 33 3.1.3 控制晶片 35 3.1.4 電源電路 36 3.1.5 升壓電路 39 3.1.6 數控電組 45 3.1.7 電刺激輸出電路 47 3.1.8 過電流保護電路 51 3.1.9 蜂鳴器電路 53 3.1.10 電極 54 3.1.11 電觸覺完整電路系統 57 3.1.12 電觸覺刺激波形設計 57 3.1.13 電觸覺系統控制程式設計 60 3.2 機械觸覺系統 61 第四章 人因測試 63 4.1 電觸覺測試流程 63 4.2 機械觸覺測試流程 66 4.3 電觸覺對比機械觸覺測試流程 66 4.4 人因測試結果與統計分析 68 4.4.1 電觸覺極性分辨結果 70 4.4.2 電觸覺頻率分辨結果 72 4.4.3 電觸覺感受測試結果與分析 74 4.4.4 電觸覺感受測試小結 84 4.4.5 機械觸覺感受測試結果與分析 86 4.4.6 機械觸覺感受測試小結 95 4.4.7 電觸覺對比機械觸覺測試結果 96 4.5 微型喇叭振幅量測實驗與結果 97 4.5.1 實驗方法 97 4.5.2 實驗設備 97 4.5.3 實驗系統架構 99 4.5.4 實驗結果 100 4.6 低頻率機械觸覺感受測試 101 第五章 結論與未來展望 104 5.1 結論 104 5.2 未來展望 106 參考文獻 107 附件一 人因測試同意書 113 附件二 人因測試問卷 114 附件三 低頻率機械觸覺人因測試問卷 126 附件四 電觸覺系統輸入值 127 附件五 電觸覺系統控制程式 128 | |
| dc.language.iso | zh-TW | |
| dc.subject | H橋電路 | zh_TW |
| dc.subject | 電觸覺回饋 | zh_TW |
| dc.subject | 人類無毛皮膚 | zh_TW |
| dc.subject | Arduino開發版 | zh_TW |
| dc.subject | 升壓電路 | zh_TW |
| dc.subject | 數控電阻 | zh_TW |
| dc.subject | 電觸覺回饋 | zh_TW |
| dc.subject | 人類無毛皮膚 | zh_TW |
| dc.subject | Arduino開發版 | zh_TW |
| dc.subject | 升壓電路 | zh_TW |
| dc.subject | 數控電阻 | zh_TW |
| dc.subject | H橋電路 | zh_TW |
| dc.subject | human glabrous skins | en |
| dc.subject | electro-tactile | en |
| dc.subject | H-bridge circuit | en |
| dc.subject | digit-control resistance | en |
| dc.subject | booster circuit | en |
| dc.subject | Arduino | en |
| dc.subject | electro-tactile | en |
| dc.subject | human glabrous skins | en |
| dc.subject | Arduino | en |
| dc.subject | booster circuit | en |
| dc.subject | digit-control resistance | en |
| dc.subject | H-bridge circuit | en |
| dc.title | 用於人類無毛皮膚之電觸覺與機械觸覺回饋比較 | zh_TW |
| dc.title | Comparison of electro-tactile and mechanical-tactile feedback in human glabrous skins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林清安,詹魁元 | |
| dc.subject.keyword | 電觸覺回饋,人類無毛皮膚,Arduino開發版,升壓電路,數控電阻,H橋電路, | zh_TW |
| dc.subject.keyword | electro-tactile,human glabrous skins,Arduino,booster circuit,digit-control resistance,H-bridge circuit, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
