Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫珍理(Chen-li Sun)
dc.contributor.authorYu-Tung Chiuen
dc.contributor.author邱宇桐zh_TW
dc.date.accessioned2021-06-16T02:44:41Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-07
dc.identifier.citation[1] J. G. Leidenfrost, 'On the fixation of water in diverse fire,' International Journal of Heat and Mass Transfer, vol. 9, no. 11, pp. 1153-1166, 1966. (10.1016/0017-9310(66)90111-6)
[2] K. Baumeister and F. Simon, 'Leidenfrost temperature—its correlation for liquid metals, cryogens, hydrocarbons, and water,' Journal of Heat Transfer, vol. 95, no. 2, pp. 166-173, 1973. (10.1115/1.3450019)
[3] S.-C. Yao and R. Henry, 'An investigation of the minimum film boiling temperature on horizontal surfaces,' Journal of Heat Transfer, vol. 100, no. 2, pp. 260-267, 1978. (10.1115/1.3450793)
[4] G. Nikolayev, V. Bychenkov, and V. Skripov, 'Saturated heat transfer to evaporating droplets from a hot wall at different pressures,' Heat Transfer Soviet Research, vol. 6, pp. 128-132, 1974.
[5] J. D. Bernardin and I. Mudawar, 'A cavity activation and bubble growth model of the Leidenfrost point,' Journal of Heat Transfer, vol. 124, no. 5, pp. 864-874, 2002. (10.1115/1.1470487)
[6] R. Abdelaziz, D. Disci-Zayed, M. K. Hedayati, J.-H. Pöhls, A. U. Zillohu, B. Erkartal, V. S. K. Chakravadhanula, V. Duppel, L. Kienle, and M. Elbahri, 'Green chemistry and nanofabrication in a levitated Leidenfrost drop,' Nature Communications, vol. 4, p. 2400, 2013. (10.1038/ncomms3400)
[7] I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. Chan, and S. T. Thoroddsen, 'Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces,' Nature, vol. 489, no. 7415, p. 274, 2012. (10.1038/nature11418)
[8] H. Kim, B. Truong, J. Buongiorno, and L.-W. Hu, 'On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena,' Applied Physics Letters, vol. 98, no. 8, p. 083121, 2011. (10.1063/1.3560060)
[9] D. Arnaldo del Cerro, A. G. Marin, G. R. Römer, B. Pathiraj, D. Lohse, and A. J. Huis in’t Veld, 'Leidenfrost point reduction on micropatterned metallic surfaces,' Langmuir, vol. 28, no. 42, pp. 15106-15110, 2012. (10.1021/la302181f)
[10] J. Bernardin and I. Mudawar, 'The Leidenfrost point: experimental study and assessment of existing models,' Journal of Heat Transfer, vol. 121, no. 4, pp. 894-903, 1999. (10.1115/1.2826080)
[11] I. U. Vakarelski, J. O. Marston, D. Y. Chan, and S. T. Thoroddsen, 'Drag reduction by Leidenfrost vapor layers,' Physical Review Letters, vol. 106, no. 21, p. 214501, 2011. (10.1103/PhysRevLett.106.214501)
[12] J. Burton, A. Sharpe, R. Van Der Veen, A. Franco, and S. Nagel, 'Geometry of the vapor layer under a Leidenfrost drop,' Physical Review Letters, vol. 109, no. 7, p. 074301, 2012. (10.1103/PhysRevLett.109.074301)
[13] D. Quéré, 'Leidenfrost dynamics,' Annual Review of Fluid Mechanics, vol. 45, pp. 197-215, 2013. (10.1146/annurev-fluid-011212-140709)
[14] A. Hashmi, Y. Xu, B. Coder, P. A. Osborne, J. Spafford, G. E. Michael, G. Yu, and J. Xu, 'Leidenfrost levitation: beyond droplets,' Scientific Reports, vol. 2, p. 797, 2012. (10.1038/srep00797)
[15] W. H. Chang, 'The influence of patterned surface in Leidenfrost droplet motion and heat transfer,' M.S Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2012.
[16] A. Bouillant, T. Mouterde, P. Bourrianne, A. Lagarde, C. Clanet, and D. Quéré, 'Leidenfrost wheels,' Nature Physics, vol. 14, no. 12, p. 1188, 2018. (10.1038/s41567-018-0275-9)
[17] Z.-H. Wu, W.-H. Chang, and C.-l. Sun, 'A spherical Leidenfrost droplet with translation and rotation,' International Journal of Thermal Sciences, vol. 129, pp. 254-265, 2018. (10.1016/j.ijthermalsci.2018.02.033)
[18] H. Linke, B. Alemán, L. Melling, M. Taormina, M. Francis, C. Dow-Hygelund, V. Narayanan, R. Taylor, and A. Stout, 'Self-propelled Leidenfrost droplets,' Physical Review Letters, vol. 96, no. 15, p. 154502, 2006. (10.1103/PhysRevLett.96.154502)
[19] G. Dupeux, M. Le Merrer, G. Lagubeau, C. Clanet, S. Hardt, and D. Quéré, 'Viscous mechanism for Leidenfrost propulsion on a ratchet,' Europhysics Letters, vol. 96, no. 5, p. 58001, 2011. (10.1209/0295-5075/96/58001)
[20] A. G. Marin, D. Arnaldo del Cerro, G. R. Römer, B. Pathiraj, A. Huis in't Veld, and D. Lohse, 'Capillary droplets on Leidenfrost micro-ratchets,' Physics of Fluids, vol. 24, no. 12, p. 122001, 2012. (10.1063/1.4768813)
[21] T. Baier, G. Dupeux, S. Herbert, S. Hardt, and D. Quéré, 'Propulsion mechanisms for Leidenfrost solids on ratchets,' Physical Review E, vol. 87, no. 2, p. 021001, 2013. (10.1103/PhysRevE.87.021001)
[22] Z.-h. Jia, M.-y. Chen, and H.-t. Zhu, 'Reversible self-propelled Leidenfrost droplets on ratchet surfaces,' Applied Physics Letters, vol. 110, no. 9, p. 091603, 2017. (10.1063/1.4976748)
[23] P. Paik, V. K. Pamula, and R. B. Fair, 'Rapid droplet mixers for digital microfluidic systems,' Lab on a Chip, vol. 3, no. 4, pp. 253-259, 2003. (10.1039/B307628H)
[24] C. Yang and G. Li, 'A novel magnet-actuated droplet manipulation platform using a floating ferrofluid film,' Scientific Reports, vol. 7, no. 1, p. 15705, 2017. (10.1038/s41598-017-15964-8)
[25] A. Watanabe, K. Hasegawa, and Y. Abe, 'Contactless fluid manipulation in air: Droplet coalescence and active mixing by acoustic levitation,' Scientific Reports, vol. 8, no. 1, p. 10221, 2018. (10.1038/s41598-018-28451-5)
[26] F. Liu, G. Ghigliotti, J. J. Feng, and C.-H. Chen, 'Self-propelled jumping upon drop coalescence on Leidenfrost surfaces,' Journal of Fluid Mechanics, vol. 752, pp. 22-38, 2014. (10.1017/jfm.2014.319)
[27] M. T. Taylor, 'Coalescence of Leidenfrost drops: Numerical simulations using the dynamic van der Waals theory,' 2017. Available: https://arxiv.org/pdf/1702.04374.pdf
[28] P.J. Linstrom and W.G. Mallard, 'NIST Chemistry WebBook, NIST Standard Reference Database Number 69,' National Institute of Standards and Technology, 2018. Available: https://webbook.nist.gov/chemistry/
[29] M. I. Company, 'Table of Emissivity of Various Surfaces.' Available: http://www-eng.lbl.gov/~dw/projects/DW4229_LHC_detector_analysis/calculations/emissivity2.pdf
[30] J. W. Strutt, 'Vi. on the capillary phenomena of jets,' Proceedings of the Royal Society of London, vol. 29, no. 196-199, pp. 71-97, 1879. (10.1098/rspl.1879.0015)
[31] W. Thielicke and E. Stamhuis, 'PIVlab–Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB, version: 1.32, 2014,' 2014. Available: https://www.researchgate.net/publication/308712958_PIVlab_-_Time-Resolved_Digital_Particle_Image_Velocimetry_Tool_for_MATLAB
[32] W. Thielicke and E. Stamhuis, 'PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB,' Journal of Open Research Software, vol. 2, no. 1, 2014. (10.5334/jors.bl)
[33] M. Serafino, 'Binary mask drawing GUI,' MATLAB Central File Exchange, 2019. Available: https://www.mathworks.com/matlabcentral/fileexchange/55372-binary-mask-drawing-gui
[34] R. Goldstein, Fluid Mechanics Measurements. Routledge, 2017.
[35] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, 'A particle image velocimetry system for microfluidics,' Experiments in Fluids, vol. 25, no. 4, pp. 316-319, 1998. (10.1007/s003480050235)
[36] M. Rossi, R. Segura, C. Cierpka, and C. J. Kähler, 'On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV,' Experiments in Fluids, vol. 52, no. 4, pp. 1063-1075, 2012. (10.1007/s00348-011-1194-z)
[37] C. J. Bourdon, M. G. Olsen, and A. D. Gorby, 'The depth of correlation in micro-PIV for high numerical aperture and immersion objectives,' Journal of Fluids Engineering, vol. 128, no. 4, pp. 883-886, 2006. (10.1115/1.2201649)
[38] FLIR Tools, 'FLIR A315, Technical Data,' 2016. Available: https://www.actekinc.com.tw/admin/download/file/2016-10-19/5807149382889.pdf
[39] Eppendorf, 'Eppendorf Research Plus - Technical Data,' 2018. Available: https://www.eppendorf.com/product-media/doc/en/672922/Liquid-Handling_Technical-data_Research-plus_Eppendorf-Research-plus-Technical-Data.pdf
[40] P.J. Linstrom and W.G. Mallard, 'NIST Chemistry WebBook, SRD 69 : water,' National Institute of Standards and Technology, 2018. Available: https://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185 Mask=4
[41] R. J. Adrian and J. Westerweel, Particle image velocimetry (no. 30). Cambridge university press, 2011.
[42] G. Jeffreys and G. Davies, 'Coalescence of liquid droplets and liquid dispersion,' in Recent Advances in Liquid–Liquid Extraction: Elsevier, 1971, pp. 495-584.
[43] C. Jin, A. Sekimoto, Y. Okano, H. Minakuchi, and S. Dost, 'Characterization of the thermal and solutal Marangoni flows of opposite directions developing in a cylindrical liquid bridge under zero gravity,' Physics of Fluids, vol. 32, no. 3, p. 034104, 2020. (10.1063/1.5142071)
[44] S. Khosharay, S. Tourang, and F. Tajfar, 'Modeling surface tension and interface of (water+methanol),(water+ethanol),(water+1-propanol), and (water+MEG) mixtures,' Fluid Phase Equilibria, vol. 454, pp. 99-110, 2017. (10.1016/j.fluid.2017.09.017)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54206-
dc.description.abstract本研究利用一具有向心鋸齒狀表面之加熱表面,使兩顆半徑為1 mm至2 mm不等之Leidenfrost液滴在中心碰撞,促進二元混合,結果發現在mm尺度下的混合最短能在99.57 ms秒內完成,大幅提升混合效率。Leidenfrost液滴碰撞混合的過程可分為三個階段,階段I由液滴動量主導,其混合效果隨著撞擊速度增加或融合前接觸時間減少而增加,時間長短由撞擊速度決定,撞擊速度增加時,對水液滴影響不大,對乙醇液滴則會造成接觸面積增加,使階段I經歷的時間上升。階段II的混合主要依靠內流場之對流,混合效果隨著渦流產生及內流場平均流速升高而增加,其時間長短則與液滴抵抗變形的能力有關,水的表面張力較大,抵抗變形能力較佳,故在體積相同的情況下,水液滴的階段II皆較短,在撞擊速度越快的情況下,液滴亦需要越多時間使振幅趨於穩定,液滴體積上升使得蒸發量上升,蒸氣層流動速度變快而增加撞擊速度,故體積越大則階段II越長。階段III則由液滴震盪主導,混合效果隨著震盪頻率升高而增加,其時間長短則與表面震盪所造成之擾動有關,同時受到震盪頻率及體積的大小影響,震盪頻率降低與體積增加都會使表面震盪時對流場產生的擾動較小,混合將越慢完成。研究成果指出,液滴體積相同時,水液滴的混合效果皆比乙醇液滴好;當流體相同時,液滴體積越小則混合效果越好;當水與乙醇液滴碰撞混合時,由於兩液滴的飽和溫度不同,融合後乙醇被水加熱,使得內部產生氣泡,內流場的熱對流及氣泡對流場的攪動促使混合效果變好,然而當水液滴的體積增加為乙醇液滴的3倍時,液滴內發生核沸騰,氣泡持續增大與破裂將影響內流場對流,致使混合效果變差。zh_TW
dc.description.abstractThis study focused on the mixing performance of two Leidenfrost drops with a radius of 1 to 2 mm. Two drops were deposited on the opposite edge of a superheated ratchet surface and propelled to collide at the center. Experimental results indicated that, best mixing can be achieved within 99.57 ms. The process of mixing and coalescence of Leidenfrost drops could be divided into 3 stages. Stage I was dominated by the momentum of the two head-on drops, so that mixing was enhanced by the increase of the approaching velocity. For ethanol drops, higher approaching velocity also led to a longer contact time. This resulted in longer stage I and less effective mixing. In stage II, convection became more important to the mixing process. Vortices were generated inside the merged drop by the shear stress of vapor film. Due to the faster inner flow, water drops always outperformed ethanol drops in mixing when their volume were identical. Stage III was dominated by surface oscillation of the coalesced mass. The elapsed time of stage III depended on the oscillation frequency and the volume of the merged drop. When water drop collided to ethanol drop, temperature difference existed within the merged drop. As a result, ethanol vaporized to produce bubble nuclei. Isolated bubbles were observed when the volume ratio of water to ethanol was less than 3. The agitation caused by the tiny bubbles increased the mixing efficiency. However, the intense bubble growth when the volume of water drop was three times larger than ethanol drop was found to mitigate the mixing process.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:44:41Z (GMT). No. of bitstreams: 1
U0001-0308202020015600.pdf: 7916071 bytes, checksum: 34db5eca13b9dc6c532b5d220ac175dc (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract iii
符號索引 vii
圖目錄 x
表目錄 xiii
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 Leidenfrost 液滴的動態行為 2
1.2.2 鋸齒表面上的Leidenfrost 效應 3
1.2.3 液滴操控及混合 4
1.3 目的 5
第二章 實驗量測與不確定性分析 7
2.1 實驗架構及設備 7
2.1.1 加熱表面 7
2.1.2 液滴產生與加熱系統 8
2.1.3 影像擷取系統 11
2.2 實驗程序 12
2.2.1 螢光混合實驗 13
2.2.2 PIV流場量測 17
2.3 不確定性分析 19
2.3.1 加熱表面溫度之相對不確定性 20
2.3.2 液滴體積之相對不確定性 21
2.3.3 螢光體積莫耳濃度之相對不確定性 21
2.3.4 正規化濃度之不確定性 23
2.3.5 正規化理想濃度之不確定性 24
2.3.6 正規化灰階強度之不確定性 25
2.3.7 ME (mixing efficiency)之不確定性 26
2.3.8 表面震盪頻率之相對不確定性 27
2.3.9 PIV內流場量測之相對不確定性 29
第三章 實驗結果與討論 30
3.1 Leidenfrost液滴二元混合之機制 30
3.2 相同液滴碰撞 33
3.2.1 10 l 水/10 l 水 33
3.2.2 10 l 乙醇/10 l 乙醇 35
3.2.3 20 l 水/20 l 水 36
3.2.4 20 l 乙醇/20 l 乙醇 38
3.3 不對稱液滴碰撞 39
3.3.1 10 l 乙醇/30 l 水 41
3.3.2 10 l 水/30 l 乙醇 43
3.3.3 10 l 水/30 l 水 44
3.3.4 10 l 乙醇/30 l 乙醇 46
3.4 混合效率比較 47
3.5 震盪頻率比較 48
第四章 結論與建議 50
4.1 結論 50
4.2 建議 51
參考文獻 53
dc.language.isozh-TW
dc.subject液滴混合zh_TW
dc.subject液滴碰撞zh_TW
dc.subjectLeidenfrost液滴zh_TW
dc.subject液滴體積比zh_TW
dc.subject不同流體組成zh_TW
dc.subject表面震盪zh_TW
dc.subjectLeidenfrost液滴zh_TW
dc.subject不同流體組成zh_TW
dc.subject表面震盪zh_TW
dc.subject液滴碰撞zh_TW
dc.subject液滴體積比zh_TW
dc.subject液滴混合zh_TW
dc.subjectcombination of different fluidsen
dc.subjectLeidenfrost dropen
dc.subjectcollision of dropsen
dc.subjectmixing of merged dropsen
dc.subjectvolume ratio of dropsen
dc.subjectsurface oscillationen
dc.subjectcombination of different fluidsen
dc.subjectLeidenfrost dropen
dc.subjectcollision of dropsen
dc.subjectmixing of merged dropsen
dc.subjectvolume ratio of dropsen
dc.subjectsurface oscillationen
dc.titleLeidenfrost液滴之二元碰撞高效混合zh_TW
dc.titleEffective mixing in two colliding Leidenfrost dropsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃智永(Chih-Yung Huang),劉耀先(Yao-Hsien Liu)
dc.subject.keywordLeidenfrost液滴,液滴碰撞,液滴混合,液滴體積比,表面震盪,不同流體組成,zh_TW
dc.subject.keywordLeidenfrost drop,collision of drops,mixing of merged drops,volume ratio of drops,surface oscillation,combination of different fluids,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202002311
dc.rights.note有償授權
dc.date.accepted2020-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0308202020015600.pdf
  未授權公開取用
7.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved