Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡(Po-Ling Kuo)
dc.contributor.authorWen-Yu Wangen
dc.contributor.author王文昱zh_TW
dc.date.accessioned2021-06-16T02:44:35Z-
dc.date.available2016-07-23
dc.date.copyright2015-07-23
dc.date.issued2015
dc.date.submitted2015-07-20
dc.identifier.citation1. J. S. Young, C.E.L.a.L.S., The significance of the “tissue pressure” of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. The Journal of Pathology and Bacteriology, 1950. 62(3): p. 313-333.
2. Heldin CH, R.K., Pietras K, Ostman A., High interstitial fluid pressure - an obstacle in cancer therapy. Nature, reviews. Cancer., 2004. 4: p. 6-13.
3. T. Lund , H.W., R. K. Reed Acute postburn edema: role of strongly negative interstitial fluid pressure. American Journal of Physiology - Heart and Circulatory Physiology, 1988. 255(5).
4. Lunt SJ, F.A., Hill RP, Milosevic M., Interstitial fluid pressure in tumors: therapeutic barrier and biomarker of angiogenesis. Future Oncology, 2008. 4(6): p. 793-802.
5. Anne J. Ridley, M.A.S., Keith Burridge, Richard A. Firtel, Mark H. Ginsberg, Gary Borisy, J. Thomas Parsons, Alan Rick Horwitz, Cell Migration: Integrating Signals from Front to Back. Science, 2003. 302(5651): p. 1704-1709.
6. Radisky DC, K.P., Bissell MJ., Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? Journal of Cellular Biochemistry, 2007. 101(4): p. 830-839.
7. Timothy Marsh, K.P., Sandra S. McAllistera, Fibroblasts as architects of cancer pathogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2013. 1832(7): p. 1070-1078.
8. Francis Lin, F.B., Christina Crenguta Gyenge, Tohru Sato, Robert D. Chambers, Juan G. Santiago and Eugene C. Butcher, Lymphocyte Electrotaxis In Vitro and In Vivo. The Journal of Immunology, 2008. 181(4): p. 2465-2471.
9. Masha Prager-Khoutorsky, A.L., Ramaswamy Krishnan, Kavitha Rajendran, Avi Mayo, Zvi Kam, Benjamin Geiger & Alexander D. Bershadsky, Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nature Cell Biology 2011. 13: p. 1457-1465.
10. Yu-Chiu Kao, C.-H.L., Po-Ling Kuo. Increased hydrostatic pressure enhances motility of lung cancer cells. in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. 2014. Chicago, IL: IEEE.
11. F., D.H., Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 1986. 315(26): p. 1650-1659.
12. Zeisberg, R.K.a.M., Fibroblasts in cancer. Nature Reviews Cancer, 2006. 6: p. 392-401.
13. Tlsty TD, H.P., Know thy neighbor: stromal cells can contribute oncogenic signals.
. Current Opinion in Genetics & Development, 2001. 11(1): p. 5.
14. Elenbaas B, W.R., Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Experimental Cell Research. 264(1): p. 169-184.
15. Wolf, P.F.a.K., Plasticity of cell migration: a multiscale tuning model. The Journal of Cell Biology, 2009. 188(1): p. 11-19.
16. Jie Li, J.C., Robert Kirsner, Pathophysiology of acute wound healing. Clinics in Dermatology. 25(1): p. 9-18.
17. T. H. Hui, Z.L.Z., J. Qian, Y. Lin, A. H. W. Ngan, and H. Gao, Volumetric Deformation of Live Cells Induced by Pressure-Activated Cross-Membrane Ion Transport. Physical Review Letters. 113(11).
18. Conner MT, C.A., Bland CE, Taylor LH, Brown JE, Parri HR, Bill RM., Rapid aquaporin translocation regulates cellular water flow: mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel. The Journal of Biological Chemistry, 2012 May 30. 287(14): p. 11516-11525.
19. AS, V., Mammalian aquaporins: diverse physiological roles and potential clinical significance. Expert Rev Mol Med, 2008.
20. S., S., Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. Journal of Cell Science, 2005. 118: p. 5691-5698.
21. Saadoun S, P.M., Hara-Chikuma M, Verkman AS, Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature, 2005. 434(7034): p. 786-792.
22. Verkman, M.H.L.a.A., Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Investigative ophthalmology & visual science, 2006. 47: p. 4365-4372.
23. AS, V., Aquaporins in endothelia. Kidney International, 2006. 69(7): p. 1120-1123.
24. Papadopoulos MC, S.S., Verkman AS., Aquaporins and cell migration. Pflügers Archiv, 2008. 456(4): p. 693-700.
25. Matthew T. Conner, A.C.C., James E. P. Brown, and Roslyn M. Bill, Membrane Trafficking of Aquaporin 1 Is Mediated by Protein Kinase C via Microtubules and Regulated by Tonicity. Biochemistry, 2010. 49: p. 821-823.
26. Schrier, F.U.a.R.W., Hypertonicity-induced Aquaporin-1 (AQP1) Expression Is Mediated by the Activation of MAPK Pathways and Hypertonicity-responsive Element in the AQP1 Gene. The Journal of Biological Chemistry, 2003. 278.
27. Alessi DR, C.A., Cohen P, Dudley DT, Saltiel AR., PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. The Journal of Biological Chemistry, 1995. 270(46): p. 27489-27494.
28. Ashish Banerjee, R.G., Martin McMahon, and Steve Gerondakis, Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proceedings of the National Academy of Sciences, 2005. 103(9): p. 3274-3279.
29. Agrawal N, D.P., Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK., RNA interference: biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 2003. 67(4): p. 657-685.
30. Grazia P. Nicchia, C.S., Angelo Sparaneo, Andrea Rossi, Antonio Frigeri, Maria Svelto, Inhibition of aquaporin-1 dependent angiogenesis impairs tumour growth in a mouse model of melanoma. Journal of Molecular Medicine, 2013. 91(5): p. 613-623.
31. Massimiliano Baldassarre, Z.R., Clara F. Burande, Isabelle Lamsoul, Pierre G. Lutz, David A. Calderwood Filamins Regulate Cell Spreading and Initiation of Cell Migration. PLoS ONE 2009. 4(11).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54204-
dc.description.abstract許多發炎反應、類似發炎反應的腫瘤環境的病理環境中都伴隨著增高的間質液壓,然而間質液壓對於這些病理環境中細胞的行為表現的影響仍然是有待研究的。我們在這次的研究中藉由探討增高的間質液壓下細胞的移動能力來檢視細胞在高壓環境下的細胞的行為表現的改變。我們選擇了T淋巴細胞以及纖維母細胞當做我們的觀察對象,這兩者細胞在發炎環境中都扮演了重要的角色,前者是在發炎反應中進行免疫反應、對抗病原等等;後者則是在發炎環境中會透過合成細胞基質進行組織修復,然而過於活化的纖維母細胞同時又會造成發炎環境的纖維化影響等等。同時兩者移動的模式略有不同,前者屬於阿米巴式的移動模式,移動速度偏快;後者則是間葉細胞的移動模式,移動速度較慢。我們的實驗設計是將細胞培養在微流道裝置中,透過將針筒拉高的方式對裝置產生水壓,藉此來模擬生理環境中的間質液壓,藉由實時的顯微鏡拍攝記錄長時間的細胞移動狀態,進一步的計算移動速度,量化螢光染色、西方墨點法等等驗證我們的假說。我們目前發現在我們實驗中給予水壓範圍內,水壓會促進纖維母細胞移動速度,卻不會影響T淋巴球的移動速度。我們推測可能的分子機轉透過螢光染色與西方墨點法映證了水通道蛋白(Aquaporin-1)在水壓下部分調節細胞移動所扮演的角色-透過水壓促使水通道蛋白的表現量進而影響細胞移動,加速細胞在水壓狀態下的移動速度。另外進一步的數學分析纖維母細胞移動模式,我們發現了在水壓會促進纖維母細胞移動促發,同時生物實驗也證實在水壓下filamin表現量上升,filamin是一個控制移動促發的重要蛋白質。我們的研究突顯了水壓影響細胞移動的重要性並且在組織工程和腫瘤細胞學中都提供了一大進展。zh_TW
dc.description.abstractMany inflammatory and inflammatory-mimic conditions such as solid malignant tumors are characterized by increased interstitial fluid pressure. However the role of the increased interstitial pressure in the improvement or deterioration of the pathological conditions remains unclear. In the present work, we investigated whether increased interstitial pressure affects the recruitment of cells to the diseased tissues by changing cell motility. Specifically we examined the migration speeds of T cells and fibroblasts, both respond to tissue inflammation with that one moves in amoeboid style and the other in mesenchymal mode. The cells were cultured in a microfluidic-based device and exposed to hydrostatic pressures similar to the interstitial pressures seen in inflammatory conditions. Time-lapsed live cell images were acquired to track the migration speeds of individual cells. Quantitative immunostaining and western blotting were employed to analyze changes of proteins expression associated with pressure exposure. Our results show that increased hydrostatic pressure enhanced the motility of fibroblasts but not T cells, which is at least in part mediated by the increased expression of aquaporin-1. Mathematical analysis of the migration pattern of fibroblasts revealed that increased hydrostatic pressure primarily enhanced initiation of migration, which was further supported by experimentally proving that increased hydrostatic pressure increased expression of filamin, a key protein in initiation of cell migration. Out findings highlight the importance of increased interstitial fluid pressure in regulation of cell motility and should shed light in the advancement of many biomedical fields ranging from tissue engineering to cancer biology.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:44:35Z (GMT). No. of bitstreams: 1
ntu-104-R02945010-1.pdf: 6325181 bytes, checksum: 42b84af84745fc21abb0b2c939792a18 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT III
TABLE OF CONTENTS V
LIST OF FIGURES VIII
LIST OF CHART VIII
I. Introduction: 1
1. Interstitial fluid pressure 1
2. Cell Migration 2
A. Fibroblasts 3
B. T lymphocytes 5
3. The Relation between Cell Migration and Increased Interstitial Fluid Pressure 6
4. Aquaporins 7
II. Materials and Method 9
1. Cell Culturing 9
A. T Lymphocytes 9
B. Fibroblasts 9
2. Method………………………………………………………………………………10
A. Fabrication of Device 11
B. Live Cell Imaging 12
C. Data Analysis 13
D. Immunofluorescence 15
E. Western Blotting 18
F. Erk1/2 Inhibition on Fibroblast 23
G. AQP-1 inhibition 24
H. Statistical Analysis 26
III. Results 27
1. Hydrostatic pressure promotes 3T3 motility 27
2. Increased HP does not affect T cell motility 29
3. Immunofluorescence analysis on AQP-1 expression 31
4. Erk1/2 Inhibitor Attenuated HP-promoted Migration of Fibroblasts 31
A. Immunofluorescence 32
B. Western Blotting 34
5. siRNA-mediated knockdown of AQP-1 35
6. Migration Model for Fibroblasts 35
A. Threshold of Moving 35
B. Single Movement Distance Analysis 38
IV. Conclusions 44
V. Discussion and Future Work 46
VI. References 48
dc.language.isoen
dc.subject細胞移動zh_TW
dc.subject纖維母細胞zh_TW
dc.subject發炎zh_TW
dc.subject水壓zh_TW
dc.subjectT細胞zh_TW
dc.subject水通道蛋白zh_TW
dc.subject間質液壓zh_TW
dc.subject細胞移動zh_TW
dc.subject纖維母細胞zh_TW
dc.subject發炎zh_TW
dc.subject水壓zh_TW
dc.subjectT細胞zh_TW
dc.subject間質液壓zh_TW
dc.subject水通道蛋白zh_TW
dc.subjectInflammationen
dc.subjectHydrostatic pressureen
dc.subjectInterstitial Pressureen
dc.subjectT cellsen
dc.subjectFibroblastsen
dc.subjectMigrationen
dc.subjectAquaporin-1en
dc.subjectInflammationen
dc.subjectHydrostatic pressureen
dc.subjectInterstitial Pressureen
dc.subjectT cellsen
dc.subjectFibroblastsen
dc.subjectMigrationen
dc.subjectAquaporin-1en
dc.title增高的間質液壓對纖維母細胞以及T細胞移動的影響zh_TW
dc.titleThe Effects of the Increased Interstitial Fluid Pressure on the Motility of Fibroblasts and T Lymphocytesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙本秀(Pen-hsiu Grace Chao),陳淑靜(SHU-CHING CHEN)
dc.subject.keywordT細胞,水壓,發炎,纖維母細胞,細胞移動,間質液壓,水通道蛋白,zh_TW
dc.subject.keywordHydrostatic pressure,Interstitial Pressure,T cells,Fibroblasts,Migration,Aquaporin-1,Inflammation,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2015-07-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved