Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范正成(Jen-Chen Fan)
dc.contributor.authorChing-Fu Changen
dc.contributor.author張景富zh_TW
dc.date.accessioned2021-06-16T02:43:27Z-
dc.date.available2015-07-23
dc.date.copyright2015-07-23
dc.date.issued2015
dc.date.submitted2015-07-20
dc.identifier.citation1. 行政院農業委員會林務局(2013),「運用光學衛星影像於全島崩塌地判釋與災害分析」。
2. 行政院農業委員會林務局(2007),「以降雨因子進行土石流警戒基準值訂定 歷年研究成果彙總」。
3. 李民、張徽正、劉憲德、陳宏仁、高銘健(2000),「陳有蘭溪集水區山崩之地質特性」,經濟部中央地質調查所地質災害報告第一號47-68。
4. 李明熹(2006),「土石流發生降雨警戒分析及其應用」,國立成功大學水利及海洋工程研究所博士論文。
5. 李毅宏(2004),「土石流預警與降雨關係之研究」,國立中興大學水土保持研究所碩士論文。
6. 林美聆、王幼行(1999),「地表水及地下水對土石流破壞型態之影響」,地工技術,74:29-38。
7. 范正成、姚正松(1997),「台灣東部地區土石流發生的水文及地文條件應用於土石流預警之初步研究」,中華民國第一屆土石流研討會,pp.125-139。
8. 范正成、吳明峰、彭光宗(1999),「豐丘土石流發生臨界降雨線之研究」,地工技術,74:39-46。
9. 范正成、吳明峰(2001),「一級溪流土石流危險因子及其與臨界降雨線之關係」,中華水土保持學報,32(3):227-234。
10. 張喬貴(2002),「集集大地震後南投地區土石流發生之雨量預警基準」,國立台灣大學農業工程學研究所碩士論文。
11. 張智瑜(2005),「地文條件對土石流發生降雨警戒指標之影響」,碩士論文,國立成功大學,水利及海洋工程學系。
12. 張綸纖(2011),「利用羅吉斯迴歸法分析崩塌對土石流降雨警戒準值之影響-以神木村為例」,國立台灣大學生物環境系統工程學研究所碩士論文。
13. 陳文福、李毅宏、吳輝龍(2005),「結合地文與降雨條件以判定土石流發生之研究-以陳有蘭溪集水區為例」,臺灣地理資訊學刊,2: 27-44。
14. 陳宏宇、蘇定義、陳琨銘(1999),「土石流發生機制與地質環境之相關性」,地工技術,74:5-20。
15. 陳韋利、林政侑、林昭遠(2014),「以逕流歷線建置土石流預警系統之研究」,水土保持學報,46(1):904-916。
16. 陳榮河(1999),「土石流之發生機制」,地工技術,74:21-28。
17. 陳樹群、施姵瑜、吳俊鋐(2013),「極端水文事件土砂量對陳有蘭溪河川型態演變影響分析」,中華水土保持學報,44(4):311-323。
18. 曾奕超(2004),「土石流發生降雨地文綜合警戒指標之研究」,國立成功大學水利及海洋工程研究所碩士論文。
19. 曾勛苑(2012),「利用羅吉斯回歸法分析崩塌對土石流降雨警戒基準值之影響-以陳有蘭溪為例」,國立台灣大學生物環境系統工程研究所碩士論文。
20. 曾聖權(2005),「SPOT衛星影像應用於陳有蘭溪集水區崩塌調查之研究」,朝陽科技大學營建工程系研究所碩士論文。
21. 詹士勝(1994),「土石流危險溪流之危險度判定模式之研究」,國立台灣大學土木工程學系碩士論文。
22. 詹錢登(1998),「土石流的發生與運動」,土木技術,1(1):132-144。
23. 劉哲欣(2000),「土石流潛在勢能及預警之研究」,國立台灣大學農業工程研究所碩士論文。
24. 謝正倫、陳禮仁(1993),「土石流潛在溪流之危險度的評估方法」,中華水土保持學報,24(1),pp.13∼19。
25. 謝正倫、陸源忠、游保杉、陳禮仁(1995),「土石流發生臨界降雨線設定方法之研究」,中華水土保持學報,26(3):167-172。
26. 蘇育瑞(1995),「地理資訊系統應用於花蓮地區土石流危險溪流判定之研究」,國立台灣大學土木工程學系碩士論文。
27. Adib, A., Salarijazi, M., Vaghefi, M., Shooshtari, M. M., and Akhondali, A. M. (2010). Comparison between GcIUH-Clark, GIUH-Nash, Clark-IUH, and Nash-IUH models. Turkish Journal of Engineering and Environmental Sciences, 34(2), 91-104.
28. Ahmad, M. M., Ghumman, A. R., Ahmad, S., and Hashmi, H. N. (2010). Estimation of a unique pair of Nash model parameters: an optimization approach. Water resources management, 24(12), 2971-2989.
29. Berti, M., and Simoni, A. (2005). Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides, 2(3), 171-182.
30. Caine, N. (1980). The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler. Series A. Physical Geography, 23-27.
31. Can, T., Nefeslioglu, H.A.,Gokceoglu,C.,Sonmez,H. and Duman, T.Y. (2005). Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology, 72(1-4):250-271.
32. Chen, N. S., Hu, G. S., Deng, M. F., Zhou, W., Yang, C. L., Han, D., and Deng, J. H. (2011). Impact of earthquake on debris flows-A case study on the Wenchuan earthquake. Journal of Earthquake and Tsunami, 5(05), 493-508.
33. Chen, R. H., and Yang, S. C. (2000). Study on debris-flow triggered by pore water pressure. In Proceedings of the Second International Conference on Debris-Flow Hazards Mitigation, 61-65.
34. Clark, C. O. (1945). Storage and the unit hydrograph. Transactions of the American Society of Civil Engineers, 110(1), 1419-1446.
35. Coe, J. A., Kinner, D. A., and Godt, J. W. (2008). Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology, 96(3), 270-297.
36. Cramer, J.S. (2002). The Origins of Logistic Regression, Tinbergen Institute Discussion Paper, No. 02-119/4
37. Cronshey, R. (1986). Urban hydrology for small watersheds. US Dept. of Agriculture, Soil Conservation Service, Engineering Division.
38. Dai, F.C.; Lee, C.F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213-228.
39. de Jong, M. D., Simmons, C. P., Thanh, T. T., Hien, V. M., Smith, G. J., Chau, T. N., ... and Farrar, J. (2006). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature medicine, 12(10), 1203-1207.
40. Dong, S. H. (2008). Genetic algorithm based parameter estimation of Nash model. Water resources management, 22(4), 525-533.
41. Fan, J. C., Huang, H. Y., Liu, C. H., Yang, C. H., Guo, J. J., Chang, C. F., and Chang, Y. C. (2015). Effects of landslide and other physiographic factors on the occurrence probability of debris flows in central Taiwan. Environmental Earth Sciences, 74(2), 1785-1801. doi: 10.1007/s12665-015-4187-z
42. Fan, J. C., Liu, C. H. and Wu, M. F. (2003), Determination of critical rainfall thresholds for debris-flow occurrence in central Taiwan and their revision after the 1999 Chi-Chi great earthquake. Proceeding of 3rd International DFHM Conference, Davos, Switzerland, 103-114.
43. Fan, J. C., Liu, C. H., Yang, C. H., and Huang, H. Y. (2009). A laboratory study on groundwater quality and mass movement occurrence. Environmental geology, 57(7), 1509-1519.
44. Fedora, M.A. and R.L.Beschta. (1989). Storm Runoff Simulation Using an Antecedent Precipitation Index(API) Model, Journal of Hydrology, 112, 121-133.
45. Ellen, S.D. and Wieczorek, G.F. (1988), Landslides, floods, and marine effects of the storm of January 3-5, 1982, in the San FranciscoBay region, California, U.S. Geological Survey Professional Paper 1434.
46. Gregoretti, C. (2000). The initiation of debris flow at high slopes: experimental results. Journal of Hydraulic Research, 38(2), 83-88.
47. Gregoretti, C., and Fontana, G. D. (2008). The triggering of debris flow due to channel‐bed failure in some alpine headwater basins of the Dolomites: Analyses of critical runoff. Hydrological processes, 22(13), 2248-2263.
48. Haring, C., Meise, U., Humpel, C., Saria, A., Fleischhacker, W. W., and Hinterhuber, H. (1989). Dose-related plasma levels of clozapine: influence of smoking behaviour, sex and age. Psychopharmacology, 99(1), S38-S40.
49. Horton, R. E. (1932). Drainage‐basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350-361.
50. Iverson, R. M. (1997). The physics of debris flows. Reviews of geophysics, 35(3), 245-296.
51. Iverson, R. M., Reid, M. E., and LaHusen, R. G. (1997). Debris-flow mobilization from landslides 1. Annual Review of Earth and Planetary Sciences, 25(1), 85-138.
52. James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning (p. 6). New York: Springer.
53. Karjalainen, S. (2007). Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Building and environment, 42(4), 1594-1603.
54. Kastens, K. A. (1984). Earthquakes as a triggering mechanism for debris flows and turbidites on the Calabrian Ridge. Marine Geology, 55(1), 13-33.
55. Klubertanz, G., Laloui, L., and Vulliet, L. (2009). Identification of mechanisms for landslide type initiation of debris flows. Engineering Geology, 109(1), 114-123.
56. Lillesand, T., Kiefer, R. W., and Chipman, J. (2014). Remote sensing and image interpretation. John Wiley and Sons.
57. Lim, K. J., Engel, B. A., Muthukrishnan, S., and Harbor, J. (2006). Effects of Initial Abstraction and Urbanization on Estimated Runoff Using CN Technology Journal of the American Water Resources Association, 42(3), 629-643. doi: 10.1111/j.1752-1688.2006.tb04481.x
58. Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C., Liu, S. H., and Lee, S. Y. (2004). Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71(1), 49-61.
59. Lin, M. L., and Chang, B. S. (2003). Triggering of debris flow caused by groundwater upwelling and surface runoff. In Proceedings, the 3rd international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Davos, Switzerland, 1, 327-338.
60. Mann, H. B., and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, 50-60.
61. Melfi, V., and Poyser, F. (2007). Trichuris burdens in zoo-housed Colobus guereza. International Journal of Primatology, 28(6), 1449-1456.
62. Nash, J. E. (1957). The form of the instantaneous unit hydrograph. Comptes Rendus et Rapports Assemblee Generale de Toronto, 3, 114-121.
63. Nash, J. E. (1959). Systematic determination of unit hydrograph parameters. Journal of Geophysical Research, 64(1), 111-115.
64. Ocak, A., and Bayazit, M. (2003). Linear reservoirs in series model for unit hydrograph of finite duration. Turkish Journal of Engineering and Environmental Sciences, 27(2), 107-114.
65. Osanai, N., Shimizu, T., Kuramoto, K., Kojima, S., & Noro, T. (2010). Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network. Landslides, 7(3), 325-338.
66. Park, D. W., Nikhil, N. V., and Lee, S. R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13, 2833-2849.
67. Parker, G., Klingeman, P.C., and McLean, D.G., 1982. Bedload and size distribution in paved gravel-bed streams. Journal of the Hydraulics Division, 108, 544–571.
68. Ponce, V. M., and Hawkins, R. H. (1996). Runoff curve number: Has it reached maturity?. Journal of hydrologic engineering, 1(1), 11-19.
69. Prancevic, J. P., Lamb, M. P., and Fuller, B. M. (2014). Incipient sediment motion across the river to debris-flow transition. Geology, 42(3), 191-194.
70. Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Soil Conservation Service.
71. Spearman, C. (1904). The proof and measurement of association between two things. The American journal of psychology, 15(1), 72-101.
72. Takahashi, T. (1978). Mechanical characteristics of debris flow. Journal of the Hydraulics Division, 104(8), 1153-1169.
73. Takahashi, T. (1981). Debris flow. Annual review of fluid mechanics, 13(1), 57-77.
74. Takahashi, T. (2000). Initiation and flow of various types of debris-flow. In Proc. 2nd Int. Conf. on Debris-Flow Hazards Mitigation, 15-25.
75. Takahashi, T. (2009). A review of Japanese debris flow research. International Journal of Erosion Control Engineering, 2(1), 1-14.
76. Tognacca, C., Bezzola, G. R., and Minor, H. E. (2000). Threshold criterion for debris-flow initiation due to channel-bed failure. In Proc. of the 2nd Int. Conf. on Debris Flow, Hazards and Mitigation, 89-97.
77. Viessman, W., and Lewis G. L. (2002). Introduction to hydrology. Prentice Hall India.
78. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bulletin, 80-83.
79. Woodward, D. E., Hawkins, R. H., Jiang, R., Hjelmfelt, A. T., Van Mullem, J. A., and Quan, Q. D. (2003). Runoff curve number method: examination of the initial abstraction ratio. In Proc. ASCE Conf. Proc., Philadelphia, PA, 118, 308.
80. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54180-
dc.description.abstract從過去至今,已有許多研究以渠槽實驗或數值模擬之方式,解釋土石流與地表逕流之力學現象;然而,在集水區尺度利用地表逕流來預測土石流的發生,卻較少研究探討。本研究旨在探討集水區逕流因子對土石流發生之影響,以陳有蘭溪集水區為例,建立使用降雨及逕流等共六種不同水文因子的土石流警戒模式,並比較模式優劣。
首先,以統計檢定之方式篩選出有效集水區面積(EWA)、溪床最大坡度(MSS)以及崩塌率(LR)等三個彼此獨立且與土石流發生顯著相關的地文因子,並以兩種不同的方法(即使用原始值與使用隸屬度)來量化地文因子。接著,本研究以單位歷線法進行陳有蘭溪集水區之降雨逕流演算,並以內茅埔流量站之實測流量驗證之,最後獲得陳有蘭溪集水區內土石流潛勢溪流之集水區逕流因子;同時亦參考前人作法建立降雨因子。而後,利用邏輯斯迴歸結合地文因子及不同的水文因子建立土石流警戒模式。
研究結果顯示,在兩種地文因子量化法、六種水文因子共十二種組合之中,使用隸屬度之土石流警戒模式較佳;而在其中又屬使用有效累積雨量、單位面積尖峰逕流以及Shields Stress Parameter推估值的五組模式之準確率較佳,均達81%以上且在伯仲之間。同時,本研究以土石流發生機率等高線圖來呈現土石流警戒參考指標,可以提供防災與整治管理兩個方向之應用價值。防災單位依照可接受之土石流發生機率,配合即時更新之崩塌狀況,訂定水文因子之警戒值以利警戒發布。另一方面,整治管理單位亦可給定一設計暴雨之水文條件,根據可接受之土石流發生機率制定崩塌地降低或管控之目標崩塌率,以利土石流之防災。
zh_TW
dc.description.abstractThe mechanical relationship between debris flow and surface runoff has been studied and described through channel experiments and numerical modeling. However, research on using surface runoff to predict the occurrence of debris flow at watershed scales is relatively rare. The objective of this study is thus to investigate the effects of surface runoff in watersheds on debris flow occurrence. With the watershed of Chenyoulan stream as an example, this study uses six different hydrologic factors, including one rainfall factor and five runoff factors, to establish debris flow warning models, whose performances and accuracy are then compared and analyzed.
To start with, based on the results from statistical tests, effective watershed area(EWA), maximum streambed slop steepness(MSS), and landslide ratio(LR) are selected for model establishment, because of their mutual independence and their significant relation to debris flow occurrence. These physiographic factors are then quantified by two methods, namely their genuine values and their degree of membership(DOM). Secondly, through synthetic unit hydrograph and validation by observed data, Chenyoulan stream’s runoff is simulated, from which five runoff factors are obtained. The effective accumulated rainfall is also obtained for the purpose of comparison. Finally, twelve debris flow warning models are established using logistic regression; each of them comprises one hydrologic factor and two or three physiographic factors quantified by either their genuine values or their DOMs.
The results show that using DOM to represent physiographic factors makes the performances of models better. Furthermore, there are five hydrologic factors that yield significantly better model accuracy, which is higher than 81%. These factors include effective accumulated rainfall(EAR), unit area one-hour peak direct runoff(q1), unit area three-hour peak direct runoff(q3), unit area five-hour peak direct runoff(q5), and estimated Shields stress parameter(SS).
The findings of this study and the consequential debris flow occurrence contour maps can be applied for disaster prevention and site rehabilitation purposes. Based on acceptable debris flow occurrence probabilities and updated landslide ratios, the authorities can establish threshold values of hydrologic factors for issuance of debris flow warning. On the other hand, with the help of designed storms and acceptable debris flow occurrence probabilities, the authorities can also set up site rehabilitation goals of landslide area reduction for debris flow prevention.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:43:27Z (GMT). No. of bitstreams: 1
ntu-104-R02622004-1.pdf: 3655833 bytes, checksum: ed3a22eb7c19479e9db6b3a076a5046e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝 誌 I
摘 要 II
ABSTRACT III
目錄 IV
圖目錄 VIII
表目錄 X
Chapter 1 前言 1
1.1 研究緣起 1
1.2 研究目的 1
1.3 研究內容 2
Chapter 2 文獻回顧 3
2.1 土石流發生之機制 3
2.2 逕流對土石流發生之影響 5
2.3 降雨逕流演算 7
2.4 地文因子對土石流發生之影響 8
2.5 土石流警戒模式 10
Chapter 3 研究方法 13
3.1 研究方向 13
3.2 研究流程 13
3.3 研究區域 15
3.3.1 陳有蘭溪集水區概述 15
3.3.2 土石流潛勢溪流 19
3.3.3 雨量資料與逕流資料 19
3.3.4 土石流事件 23
3.4 土石流地文因子 26
3.4.1 建構地文因子所需之資料 26
3.4.2 地文因子量化 29
3.4.3 地文因子篩選 32
3.4.4 地文因子模糊化 34
3.5 降雨逕流演算 36
3.5.1 雨量資料處理 36
3.5.2 逕流資料處理 40
3.5.3 降雨及逕流因子量化 41
3.6 土石流警戒模式之建立 46
3.6.1 邏輯斯迴歸(Logistic Regression) 46
3.6.2 模式優劣量化 50
Chapter 4 結果與討論 52
4.1 土石流地文因子篩選與量化結果 52
4.1.1 MWW檢定:地文因子與土石流發生之間的關係 52
4.1.2 Spearman Rank Test:地文因子彼此之間的獨立性 55
4.1.3 地文因子模糊化 56
4.2 降雨逕流演算結果 59
4.2.1 Nash合成逕流歷線法之參數 59
4.2.2 逕流模擬參數驗證 62
4.3 土石流警戒模式 66
4.3.1 以降雨為水文因子之警戒模式 66
4.3.2 以逕流為水文因子之警戒模式 67
4.3.3 土石流警戒模式之比較分析 68
4.4 綜合討論 74
4.4.1 與前人研究成果比較 74
4.4.2 應用價值 77
4.4.3 未來精進方向 83
Chapter 5 結論與建議 85
5.1 結論 85
5.2 建議 87
參考文獻 88
附錄A:表格 98
附錄B:式(17)之推導 131
dc.language.isozh-TW
dc.subject邏輯斯迴歸zh_TW
dc.subject土石流zh_TW
dc.subject邏輯斯迴歸zh_TW
dc.subject降雨逕流演算zh_TW
dc.subject降雨逕流演算zh_TW
dc.subject崩塌率zh_TW
dc.subject土石流zh_TW
dc.subject崩塌率zh_TW
dc.subjectdebris flowen
dc.subjectrainfall runoff routingen
dc.subjectlandslide ratioen
dc.subjectlogistic regressionen
dc.subjectrainfall runoff routingen
dc.subjectlandslide ratioen
dc.subjectlogistic regressionen
dc.subjectdebris flowen
dc.title集水區逕流因子對土石流發生之影響 - 以陳有蘭溪集水區為例zh_TW
dc.titleEffects of Watershed Runoff Factors on Debris Flow Occurrence–Using the Watershed of Chenyoulan Stream as An Exampleen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊國鑫(Kuo-Hsin Yang),廖國偉(Kuo-Wei Liao),劉哲欣(Che-Hsin Liu)
dc.subject.keyword土石流,邏輯斯迴歸,崩塌率,降雨逕流演算,zh_TW
dc.subject.keyworddebris flow,logistic regression,landslide ratio,rainfall runoff routing,en
dc.relation.page132
dc.rights.note有償授權
dc.date.accepted2015-07-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved