Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民
dc.contributor.authorTz-Shin Laien
dc.contributor.author賴姿心zh_TW
dc.date.accessioned2021-06-16T02:43:19Z-
dc.date.available2025-07-20
dc.date.copyright2015-07-23
dc.date.issued2015
dc.date.submitted2015-07-20
dc.identifier.citationAki, K. (1987). Magnitude-frequency relation for small earthquakes: A clue to the origin of fmax of large earthquakes, J. Geophys. Res. 92, no. B2, 1349–1355.
Anderson, J. G. (1991). A preliminary descriptive model for the distance dependence of the spectral decay parameter in southern California, Bull. Seismol. Soc. Am. 81, 2186–2193.
Anderson, J. G., and J. R. Humphrey Jr. (1991). A least squares method for objective determination of earthquake source parameters, Seism. Res. Lett. 62, 201–209.
Anderson, J. G., and S. E. Hough (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seismol. Soc. Am. 74, 1969–1993.
Boore, D. M. (2003). Simulation of ground motion using the stochastic method, Pure Appl. Geophys. 160, 635–676.
Campbell, K. W. (2009). Estimates of shear-wave Q and κ0 for unconsolidated and semiconsolidated sediments in Eastern North America, Bull. Seismol. Soc. Am. 99, 2365–2392.
Castro, R. R., L. Trojani, G. Monachesi, M. Mucciarelli, and M. Cattaneo (2000). The spectral decay parameter κ in the region of Umbria-Marche, Italy, J. Geophys. Res. 105, 23,811–23,823.
Chan, C. H. and Y. M. Wu (2014), Seismic behavior in central Taiwan: response to stress evolution following the 1999 Mw7.6 Chi-Chi earthquake, Journal of Asian Earth Sciences, 90, 101–106.
Chang, C. H. (2004). Application of a dense seismic network data on the study of seismogenic structures of central and eastern Taiwan, Ph.D. Thesis, Institute of Geophysics, National Central University, 156 pp.
Chapman, M. C., P. Talwani, and R. C. Cannon (2003). Ground-motion attenuation in the Atlantic Coastal Plain near Charleston, South Carolina, Bull. Seismol. Soc. Am. 93, 998–1011.
Chen, K. P., Wang, C. Y., Tsai, Y. B., and Chang, W. Y. (2013). A Seismic Structure Study in the Kaoping Area, Southwestern Taiwan. Bull. Seismol. Soc. Am. 103, no. 1,306-316.
Davis, S. D., and C. Frohlich (1991). Single-link cluster analysis of earthquake aftershocks: decay laws and regional variations, J. Geophys. Res. 96, 6336–6350.
Douglas, J., P. Gehl, L. F. Bonilla, and C. Gélis (2010). A κ model for mainland France, Pure Appl. Geophys. 167, 1303–1315.
Hanks, T. C. (1982). fmax, Bull. Seismol. Soc. Am. 72, 1867–1879.
Hough, S. E., and J. G. Anderson (1988). High-frequency spectra observed at Azna, California: Implications for Q structure, Bull. Seismol. Soc. Am. 78, 692–707.
Hough, S. E., J. G. Anderson, J. Brune, F. Vernon, J. Berger, J. Fletcher, L. Haar, T. Hanks, and L. Baker (1988). Attenuation near Anza, California, Bull. Seismol. Soc. Am. 78, 672–691.
Huang, Q. (2004). Seismicity pattern change prior to large earthquakes — an approach of the RTL algorithm, TAO 15, 469–491.
Huang, Q., and T. Nagao (2002). Seismic quiescence before the 2000 M = 7.3 Tottori earthquake, Geophys. Res. Lett. 29, 1578.
Huang, Q., G. A. Sobolev, and T. Nagao (2001). Characteristics of the seismic quiescence and activation patterns before the M = 7.2 Kobe earthquake, January 17, 1995, Tectonophysics 337, 99–116.
Ktenidou, O. J., C. Gélis, and L. F. Bonilla (2013). A study on the variability of kappa (κ) in a borehole: Implications of the computation process, Bull. Seismol. Soc. Am. 103, no. 2A, 1048–1068.
Mogi, K. (1979). Two kinds of seismic gaps, Pure Appl. Geophys. 117, 1172–1186.
Papageorgiou, A. S., and K. Aki (1983). A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. I. Description of the model, Bull. Seismol. Soc. Am. 73, no. 3, 693–722.
Tsai, C.-C. P., and K.-C. Chen (2000). A model for the high-cut process of strong-motion accelerations in terms of distance, magnitude, and site condition: An example from the SMART 1 array, Lotung, Taiwan, Bull. Seismol. Soc. Am. 90, no. 6, 1535–1542.
Van Houtte, C., S. Drouet, and F. Cotton (2011). Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs, Bull. Seismol. Soc. Am. 101, no. 6, 2926–2941.
Wiemer, S., and M. Wyss (1994). Seismic quiescence before the Landers (M = 7.5) and Big Bear (M = 6.5) 1992 earthquakes, Bull. Seism. Soc. Am. 84, 900–916.
Wu, Y.M., and C.C. Chen (2007). Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, Mw7.6 earthquake. Tectonophysics 429, 125–132.
Wu, Y. M. and L. Y. Chiao (2006). Seismic quiescence before the 1999 Chi-Chi, Taiwan Mw7.6 earthquake, Bull. Seism. Soc. Am. 96, 321-327.
Wu, Y. M., R. M. Allen, and C. F. Wu (2005). Revised ML determination for crustal earthquakes in Taiwan, Bull. Seism. Soc. Am. 95, 2517–2524
Wu, Y. M., C.C. Chen, L. Zhao, and C.H. Chang (2008). Seismicity characteristics before the 2003 Chengkung, Taiwan Mw6.8 earthquake. Tectonophysics 457, 177–182.
Wu, Y. M., C.H. Chang, N.C. Hsiao, and F.T. Wu (2003). Relocation of the 1998 Rueyli, Taiwan, earthquake sequence using three-dimensions velocity structure with stations corrections. Terre. Atmos. Oceanic Sci., 14, 421-430.
Wu, Y. M., C. H. Chang, L. Zhao, J. B. H. Shyu, Y. G. Chen, K. Sieh, and J. P. Avouac (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong-motion stations. J. Geophys. Res., 112, B08312.
Wyss, M., and R. E. Habermann (1988). Precursory seismic quiescence, Pure Appl. Geophys. 126, 319–332.
陳俊德(2006)。利用有限斷層法探討台北盆地之場址效應,國立中央大學地球物理研究所碩士論文,共121頁。
馬國鳳、王郁如、許軒瑞、陳燕玲、陳達毅(2013)。氣象局井下地震監測站資料分析與應用(1/2),交通部中央氣象局委託研究計畫期末成果報告。
馬國鳳、王郁如、吳少凱、呂佩玲、陳承俊、甘志文(2014),氣象局井下地震監測站資料分析與應用(2/2)。交通部中央氣象局委託研究計畫期末成果報告。
溫國樑、郭俊翔、陳俊德、黃雋彥、郭鎧紋、陳國昌、徐魁江(2013)。氣象局地表與井下測站場址效應之研究,交通部中央氣象局委託研究計畫成果報告。
中央氣象局(2009)。98年井下地震儀建置案完工報告書。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54177-
dc.description.abstract中央氣象局地震觀測網(Central Weather Bureau Seismic Network, CWBSN)於2012年新增測站加入地震觀測網中,但是還未將新增地震測站的場址效應用以修正規模,其會影響地震芮氏規模的估算;另外,從芮氏規模大於2.0的地震個數統計中,發現在2012年有低地震活動度之現象,因此,我們想要了解新增測站與2012年的低地震活動度,這兩者之間有無關聯性。本研究第一部分使用CWBSN地震目錄中,1994/01/01至2012/12/31所有地震事件的芮氏規模與單一測站所估算的地震規模來得到測站修正量,為了要降低測站的場址效應,將使用測站修正量來修正芮氏規模。此測站修正量充分的反映測站下方之地質條件,測站位於鬆軟的土壤層,其修正量為負值,相反地,測站位在堅硬的地層上,則為正值。透過修正地震規模後,在2012年芮氏規模大於2.0的地震個數明顯的增加,並沒有出現異常的現象,因此2012年並沒有出現低地震活動度之現象,而是中央氣象局新增的測站大多分布於山區,造成地震規模低估之問題。除了測站修正量,本研究第二部分進行分析振幅頻譜中高頻衰減參數kappa(κ),進一步獲得更多台灣地震測站場址效應的資訊,我們使用氣象局30個井下地震儀陣列,選取芮氏規模大於4.0且震源深度小於35公里的133個地震事件去計算κ值,每個地震儀陣列於地表和井下的位置各有一部強震儀,利用地表與井下測站算出的κ值與震源距進行迴歸分析後,可以得到κ0值,該值代表了該測站的近地表衰減特性,從結果中可以發現,井下地震儀陣列中地表站的κ0值大於井下站的κ0值。進一步,我們可以使用在本研究中所求出的井下地震儀陣列的κ0值,研究淺層的衰減參數Qs值。另外,將臺灣κ0值分布圖與測站修正量做比較,高κ0值出現在測站修正量為負值的地區,再次驗證與測站所在的地質狀況產生的場址效應有直接相關,為了找出測站修正量與κ0值的關係式,我們將台灣強地動觀測計畫(Taiwan Strong Motion Instrumentation Program, TSMIP)的自由場強震站與CWBSN共站之測站,計算其κ0值,並得出迴歸公式。在本研究所得到的測站修正量與κ0值可以用來討論測站的場址特性,並且透過井下地震儀陣列的κ0值與測站修正量的迴歸式,可提供在未來將井下地震儀加入地震規模估算做為參考。zh_TW
dc.description.abstractSeismic stations including the Broadband Array in Taiwan for Seismology (BATS) were incorporated within the Central Weather Bureau Seismic Network (CWBSN) since 2012. However, site effects of seismic stations have not been applied for M_L determination that it may affect the magnitude estimation. Moreover, the appearance of relatively low seismicity is observed in 2012 from monthly event counts for〖 M〗_L >2.0. Thus, we would like to examine whether there is a relationship between the updated seismic network and low seismicity or not. In this study, we first collect the earthquake catalog data during the period from 1994/01/01 to 2012/12/31 to calculate the station correction in order to reduce site effect in estimating magnitude. There is a strong correlation between station correction and near-surface geology beneath the station. Stations located on soil sites have high amplifications with negative station corrections. In contrast, stations located on hard rock sites have low amplifications with positive station corrections. After applied the station corrections to revise〖 M〗_L estimation, the monthly event-occurrence rates return inside the range of one standard deviation in 2012 and revealed no low or high anomaly. Therefore, the reason low seismicity in 2012 is that new seismic stations which are installed on rock sites lead to underestimate of the magnitude determination. Next, we investigate the spectral decay parameter kappa (κ) to get more information for site effects of seismic stations. We used 133 earthquakes recorded by 30 borehole seismic array deployed by Central Weather Bureau (CWB) to estimate the κ value. Each vertical array includes two force balance accelerometers at the surface and the borehole. Based on the regression analysis between κ value and hypocentral distance for each surface-borehole station pairs, most of resulting κ0 derived from surface stations are higher than results of borehole stations. These valuable dataset of κ0 values offer an excellent opportunity for us to evaluate the quality factor (Qs) at shallow depths. In comparison with a study of site corrections, these higher κ0 values associated with negative station corrections can correspond to effect of soil conditions. In order to determine the linear relationship between station corrections and κ0 values, we find the co-site stations of TSMIP and CWBSN to estimate κ0 and the regression line. In this study, the station corrections of magnitude and κ0 values both can investigate the site effects beneath the stations. Furthermore, the regression line of these two can be the information for the estimation of earthquake magnitude including borehole stations in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:43:19Z (GMT). No. of bitstreams: 1
ntu-104-R02224202-1.pdf: 4734805 bytes, checksum: 99ffc82f847458a68036e1df588645b1 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents論文口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1前言與研究動機 1
1.2研究內容 2
第二章 文獻回顧 3
2.1 地震安靜期 3
2.2 地震規模之測站修正量(station correction) 4
2.3 高頻衰減參數kappa(κ) 6
2.4 淺層沉積構造的衰減特性Q值 9
第三章 研究方法 11
3.1 資料來源、選取與分析流程 11
3.1.1 中央氣象局地震觀測網(CWBSN) 12
3.1.2 井下地震儀陣列 13
3.2 去除餘震 17
3.3 測站修正量與修正芮氏規模 18
3.4 高頻衰減參數κ值 19
3.4.1 理論 19
3.4.2資料處理流程與κ值的計算 19
3.5 迴歸方法 23
3.5.1最小平方法 24
3.5.2給予資料點權重 24
3.5.3格點搜尋方法 25
3.6 由κ0值推求近地表衰減特性Qs值 25
第四章 結果與討論 26
4.1 地震規模之測站修正量 26
4.2 地震活動度分析 32
4.3 κ值與距離的迴歸分析 35
4.3.1 距離之選擇 35
4.3.2 κ值與震源距的迴歸分析 36
4.4 台灣井下地震儀陣列κ0值 39
4.4.1 井下地震儀陣列地表測站κ0值 39
4.4.2 井下地震儀陣列井下測站κ0值 41
4.4.3 井下地震儀地表站與井下站κ0值之比較 42
4.5 井下地震儀陣列淺層衰減特性Qs值 45
4.6 κ0值與地震規模的測站修正量之比較 47
4.6.1強震站和CWBSN共站之測站的κ0值 47
4.6.2 κ0值與測站修正量的關係式 50
第五章 結論 51
參考文獻 52
附錄A 井下地震儀陣列各測站κ值與震源距迴歸結果 55
附錄B 強震站和S13共站之各測站κ值與震源距迴歸結果 69
dc.language.isozh-TW
dc.title場址效應研究:地震規模之測站修正量與利用井下地震儀陣列資料量測衰減參數zh_TW
dc.titleA Study of Site Effect on Station Corrections of Magnitude and Measurement of the Spectral Decay Parameter Kappa Using Borehole Seismic Array Dataen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee溫國樑,張建興,郭陳澔
dc.subject.keyword場址效應,測站修正量,kappa (κ),井下地震儀陣列,地震規模,zh_TW
dc.subject.keywordsite effects,station corrections,kappa (κ),borehole seismic array,magnitude,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2015-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved