請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54167完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊顯 | |
| dc.contributor.author | Chi-Feng Ying | en |
| dc.contributor.author | 應奇峰 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:42:52Z | - |
| dc.date.available | 2017-07-22 | |
| dc.date.copyright | 2015-07-22 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-21 | |
| dc.identifier.citation | [1] Chang, H. C.; Lu, C.; Liu, C. L.; Chen, W. C. Adv. Mater. 2015, 27, 27-33.
[2] Vak, D.; van Embden, J.; Wong, W. W.; Watkins, S. Appl. Phys. Lett. 2015, 106, 033302. [3] Sun, Z.; Shi, S.; Bao, Q.; Liu, X.; Fahlman, M. Adv. Mater. Interfaces 2015, 2, 1400527. [4] Tran, T. L. A.; Çakır, D.; Wong, P. J.; Preobrajenski, A. B.; Brocks, G.; van der Wiel, W. G.; de Jong, M. P. ACS Appl. Mater. Interfaces 2013, 5, 837-841. [5] Torrente, I. F.; Franke, K. J.; Pascual, J. I. J. Phys. Condens. Matter 2008, 20, 184001. [6] Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P. Nat. Nanotechnol. 2011, 6, 247-252. [7] Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys. Rev. Lett. 1983, 50, 120. [8] Scanning Tunneling Microscopy. http://www.ieap.uni-kiel.de/surface/ag-kipp/stm/stm.htm (accessed Feb 21, 2015). [9] Borisenko, N.; Atkin, R.; Lahiri, A.; El Abedin, S. Z.; Endres, F. J. Phys. Condens. Matter 2014, 26, 284111. [10] Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Science 1993, 262, 218-220. [11] Endres, F.; Borisenko, N.; El Abedin, S. Z.; Hayes, R.; Atkin, R. Faraday Discuss. 2012, 154, 221-233. [12] Wilms, M.; Broekmann, P.; Stuhlmann, C.; Wandelt, K. Surf. Sci. 1998, 416, 121-140. [13] Scanning Tunneling Microscopy and Spectroscopy. http://goo.gl/Zf984i (accessed Mar 25, 2015). [14] Chen, C. J., Introduction to Scanning Tunneling Microscopy. Oxford University Press: New York, 1993; p 23. [15] STM Operation Modes. http://eng.thesaurus.rusnano.com/wiki/article14154 (accessed Apr 11, 2015). [16] Guo, S.; Fogarty, D. P.; Nagel, P. M.; Kandel, S. A. The Journal of Physical Chemistry B 2004, 108, 14074-14081. [17] Li, H.-I.; Pussi, K.; Hanna, K.; Wang, L.-L.; Johnson, D.; Cheng, H.-P.; Shin, H.; Curtarolo, S.; Moritz, W.; Smerdon, J. Phys. Rev. Lett. 2009, 103, 056101. [18] Grobis, M.; Lu, X.; Crommie, M. Phys. Rev. B 2002, 66, 161408. [19] Hashizume, T.; Motai, K.; Wang, X.; Shinohara, H.; Saito, Y.; Maruyama, Y.; Ohno, K.; Kawazoe, Y.; Nishina, Y.; Pickering, H. Phys. Rev. Lett. 1993, 71, 2959. [20] Abel, M.; Dmitriev, A.; Fasel, R.; Lin, N.; Barth, J.; Kern, K. Phys. Rev. B 2003, 67, 245407. [21] Pinardi, A. L.; Biddau, G.; van De Ruit, K.; Otero-Irurueta, G.; Gardonio, S.; Lizzit, S.; Schennach, R.; Flipse, C. F.; López, M. F.; Méndez, J. Nat. Nanotechnol. 2014, 25, 385602. [22] Shi, X.-Q.; Van Hove, M. A.; Zhang, R.-Q. J. Mater. Sci. 2012, 47, 7341-7355. [23] Néel, N.; Kröger, J. r.; Limot, L.; Berndt, R. Nano Lett. 2008, 8, 1291-1295. [24] Schull, G.; Becker, M.; Berndt, R. New J. Phys. 2008, 10, 065012. [25] Gimzewski, J.; Modesti, S.; David, T.; Schlittler, R. J. Vac. Sci. Technol., B 1994, 12, 1942-1946. [26] Pai, W. W.; Jeng, H.; Cheng, C.-M.; Lin, C.-H.; Xiao, X.; Zhao, A.; Zhang, X.; Xu, G.; Shi, X.; Van Hove, M. Phys. Rev. Lett. 2010, 104, 036103. [27] Larsson, J. A.; Elliott, S. D.; Greer, J. C.; Repp, J.; Meyer, G.; Allenspach, R. Phys. Rev. B 2008, 77, 115434. [28] Cepek, C.; Goldoni, A.; Modesti, S. Phys. Rev. B 1996, 53, 7466. [29] Stróżecka, A.; Mysliveček, J.; Voigtländer, B. Appl. Phys. A 2007, 87, 475-478. [30] Tsuei, K.-D.; Yuh, J.-Y.; Tzeng, C.-T.; Chu, R.-Y.; Chung, S.-C.; Tsang, K.-L. Phys. Rev. B 1997, 56, 15412. [31] Lu, X.; Grobis, M.; Khoo, K.; Louie, S. G.; Crommie, M. Phys. Rev. Lett. 2003, 90, 096802. [32] Silien, C.; Pradhan, N.; Ho, W.; Thiry, P. Phys. Rev. B 2004, 69, 115434. [33] Kröger, J.; Néel, N.; Limot, L. J. Phys. Condens. Matter 2008, 20, 223001. [34] de Parga, A. V.; García-Vidal, F.; Miranda, R. Phys. Rev. Lett. 2000, 85, 4365. [35] Rabe, A.; Memmel, N.; Steltenpohl, A.; Fauster, T. Phys. Rev. Lett. 1994, 73, 2728. [36] Negulyaev, N.; Stepanyuk, V.; Bruno, P.; Diekhöner, L.; Wahl, P.; Kern, K. Phys. Rev. B 2008, 77, 125437. [37] Heinrich, B.; Iacovita, C.; Rastei, M.; Limot, L.; Ignatiev, P.; Stepanyuk, V.; Bucher, J. Eur. Phys. J. B 2010, 75, 49-56. [38] Pietzsch, O.; Kubetzka, A.; Bode, M.; Wiesendanger, R. Phys. Rev. Lett. 2004, 92, 057202. [39] Rastei, M.; Heinrich, B.; Limot, L.; Ignatiev, P.; Stepanyuk, V.; Bruno, P.; Bucher, J. Phys. Rev. Lett. 2007, 99, 246102. [40] Wang, L.-L.; Cheng, H.-P. Phys. Rev. B 2004, 69, 045404. [41] Hockett, L. A.; Creager, S. E. Rev. Sci. Instrum. 1993, 64, 263-264. [42] Horcas, I.; Fernández, R.; Gomez-Rodriguez, J.; Colchero, J.; Gómez-Herrero, J.; Baro, A. Rev. Sci. Instrum. 2007, 78, 013705. [43] Lewis, E.; Le, D.; Jewell, A.; Murphy, C.; Rahman, T.; Sykes, E. Chem. Commun. 2014, 50, 6537-6539. [44] Zhang, X.; He, W.; Zhao, A.; Li, H.; Chen, L.; Pai, W. W.; Hou, J.; Loy, M.; Yang, J.; Xiao, X. Phys. Rev. B 2007, 75, 235444. [45] Kawahara, S.; Lagoute, J.; Repain, V.; Chacon, C.; Girard, Y.; Rousset, S.; Smogunov, A.; Barreteau, C. Nano Lett. 2012, 12, 4558-4563. [46] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. [47] Scanning Tunneling Microscopy and Spectroscopy. http://goo.gl/RbhlbA (accessed May 20, 2015). [48] Hands, I. D.; Dunn, J. L.; Bates, C. A. Phys. Rev. B 2010, 81, 205440. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54167 | - |
| dc.description.abstract | 本論文研究碳六十(Buckminsterfullerene, C60)在Cu(111)單晶表面的鈷奈米島台階邊緣與Cu(111)台階邊緣的吸附方向與其電子結構,利用超高真空-低溫-掃描穿隧顯微鏡(ultrahigh vacuum-low temperature-scanning tunneling microscope, UHV-LT-STM)進行兩種樣品製備與表面分析,在超高真空的環境下經由(1)熱阻式方式,蒸鍍碳六十到Cu(111)表面取得C60/Cu(111)樣品;與(2)先熱蒸鍍金屬鈷到Cu(111)表面,獲得兩個原子層厚的三角形鈷奈米島,再蒸鍍碳六十,以獲得C60-Co/Cu(111)樣品。STM進行影像掃描,觀察碳六十分子在兩種基材表面的吸附位向;在穿隧迴路連接鎖相放大器(lock-in amplifier)可獲得掃描穿隧能譜(scanning tunneling spectroscopy, STS)。碳六十在平整表面的吸附位向可分為六邊形(hexagon)中心朝上(h)、五邊形(pentagon)中心朝上(p)、六邊形-五邊形鍵朝上(h:p)、六邊形-六邊形鍵朝上(p:p)或頂端原子(apex atom)朝上(a)等等。STM影像顯示碳六十在Cu(111)台階邊緣的吸附方向為h,而在鈷奈米島台階邊緣則為h:p。STS能譜顯示碳六十分子在兩種台階邊緣的電子結構有明顯的差異,在Cu(111)台階邊緣的碳六十LUMO (lowest unoccupied molecular orbital)譜峰分裂,而在鈷奈米島邊緣的碳六十,除了LUMO穿隧譜峰分裂,連HOMO (highest occupied molecular orbital)的譜峰也分裂了,顯示分子與這兩種金屬原子有不同的軌域混成作用(p-d hybridization)。經Atomistix ToolKit (ATK)軟體模擬獲得的能態密度(Density of States)與掃描穿隧能譜進行比較,佐證經由台階的側向接觸能明顯改變碳六十分子的軌域分佈。 | zh_TW |
| dc.description.abstract | Adsorbate-substrate interactions are important and typical subjects in surface science because the interactions modulate the electronic structures of the adsorbate and thus offer a tactic to modify the interfacial properties. At step edges, in addition to the underneath substrate, lateral interactions from the vertical face of the step come into play. In this thesis work of C60, a bimetallic step edge was prepared by deposition of cobalt nanoislands on Cu(111). Hence, the effect on the electronic structures of C60 from the bimetallic substrate can be compared with that from the Cu(111) step edge. UHV-LT-STM/STS (ultrahigh vacuum-low temperature- scanning tunneling microscopy/spectroscopy) was employed to acquire, at the molecular level, STM images and STS spectra of C60 lodged at the edges of Cu steps and Co nanoislands on Cu(111). Topographic images for the former suggested an orientation of C60 with the hexagon ring facing Cu(111) and for the latter with a hexagon-pentagon bond resting on Cu(111). The discrepancy manifested the effect of aforementioned lateral interactions on the orientation of C60 adsorption. dI/dV spectra of C60 at Cu(111) step edge exhibited LUMO (lowest unoccupied molecular orbital) splitting, while at the edge of cobalt nanoislands additional splitting at the HOMO (highest occupied molecular orbital) level took place. The splitting involved the coupling of adsorbate states to those of the substrate. Different degrees of p-d hybridizations between C60 and metal atoms on the vertical face of the step are proposed for the disparities of dI/dV peaks. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:42:52Z (GMT). No. of bitstreams: 1 ntu-104-R02223184-1.pdf: 6116973 bytes, checksum: 5a285872d0132b2424149d94a9dae7b1 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 # 謝辭 I 中文摘要 III ABSTRACT IV 圖目錄 VII CHAPTER 1 Introduction 1 1.1. Motivation 1 1.2. Principle of Scanning Tunneling Microscopy 2 1.2.1. Quantum Tunneling Effect 4 1.2.2. Scanning Modes 7 1.3. Principle of Scanning Tunneling Spectroscopy 8 1.3.1. Differential Conductance Curve 8 1.3.2. Conductance Map 9 1.4. Literature Review 10 1.4.1. C60 on Fcc(111) Metal Surfaces 11 1.4.2. C60 on Cu(111) with Annealing Procedure 14 1.4.3. C60 on Cu(111) without Annealing Procedure 17 1.4.4. Cobalt Islands on Cu(111) 22 1.4.5. STS Analysis and DOS Calculation of C60 on Metal Surfaces 25 CHAPTER 2 Instruments 30 2.1. Ultra-High Vacuum Chamber 30 2.2. Scanning Tunneling Microscope 34 2.3. Lock-In Amplifier 35 2.4. Calibration and Testing 36 2.5. Tip Fabrication 38 CHAPTER 3 C60 at Copper Step Edge and C60 at Cobalt Islands Edge 40 3.1. Sample Preparation 40 3.1.1. Cu(111) Single Crystal 40 3.1.2. C60 Self-Assembled Monolayers 41 3.1.3. Cobalt Islands 42 3.1.4. C60 at the Cobalt Island Edge 45 3.2. The Electronic Structure of C60 at the Copper Step Edge 47 3.3. The Electronic Structure of C60 at the Cobalt Island Edge 49 3.4. Comparison of C60 at Copper Step Edge and Cobalt Island Edge 53 CHAPTER 4 Conclusion 56 Appendix 57 References 59 | |
| dc.language.iso | en | |
| dc.subject | 碳六十 | zh_TW |
| dc.subject | 掃描穿隧顯微術 | zh_TW |
| dc.subject | 掃描穿隧能譜 | zh_TW |
| dc.subject | Cu(111) | zh_TW |
| dc.subject | 分子-金屬界面 | zh_TW |
| dc.subject | p-d軌域混成 | zh_TW |
| dc.subject | 掃描穿隧顯微術 | zh_TW |
| dc.subject | 掃描穿隧能譜 | zh_TW |
| dc.subject | Cu(111) | zh_TW |
| dc.subject | 碳六十 | zh_TW |
| dc.subject | 分子-金屬界面 | zh_TW |
| dc.subject | p-d軌域混成 | zh_TW |
| dc.subject | Cu(111) | en |
| dc.subject | Scanning Tunneling Spectroscopy | en |
| dc.subject | C60 | en |
| dc.subject | Scanning Tunneling Microscopy | en |
| dc.subject | p-d hybridization | en |
| dc.subject | Molecule-Metal Interface | en |
| dc.subject | Scanning Tunneling Microscopy | en |
| dc.subject | Scanning Tunneling Spectroscopy | en |
| dc.subject | Cu(111) | en |
| dc.subject | C60 | en |
| dc.subject | Molecule-Metal Interface | en |
| dc.subject | p-d hybridization | en |
| dc.title | C60於鈷奈米島/Cu(111)的台階邊緣之掃描穿隧顯微術研究:雙金屬界面的C60電子結構 | zh_TW |
| dc.title | Electronic Structure Modulation at Molecule-Bimetallic Interface: an STM/STS Study of Single C60 at Biatomic Step Edge of Co/Cu(111) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭旭明,金必耀,陳祺,林敏聰 | |
| dc.subject.keyword | 掃描穿隧顯微術,掃描穿隧能譜,Cu(111),碳六十,分子-金屬界面,p-d軌域混成, | zh_TW |
| dc.subject.keyword | Scanning Tunneling Microscopy,Scanning Tunneling Spectroscopy,Cu(111),C60,Molecule-Metal Interface,p-d hybridization, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
