Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳宗霖(Tzong-Lin Wu)
dc.contributor.authorChing-Huei Chenen
dc.contributor.author陳靜慧zh_TW
dc.date.accessioned2021-06-16T02:39:28Z-
dc.date.available2020-07-24
dc.date.copyright2015-07-24
dc.date.issued2015
dc.date.submitted2015-07-23
dc.identifier.citation[1] T.-L. Wu, F. Buesink, and F. Canavero, 'Overview of Signal Integrity and EMC Design Technologies on PCB: Fundamentals and Latest Progress,' IEEE Trans. Electronmagn. Compat., vol. 55, pp. 624-638, Aug. 2013.
[2] F. Olyslager, E. Laermans, D. De Zutter, S. Criel, R. De Smedt, N. Lietaert, et al., 'Numerical and experimental study of the shielding effectiveness of a metallic enclosure,' IEEE Trans. Electronmagn. Compat., vol. 41, pp. 202-213, Aug. 1999.
[3] C.-H. Huang, C.-Y. Hsiao, C.-D. Wang, T. Chen, K.-H. Liao, and T.-L. Wu, 'Conformal shielding investigation for SiP modules,' in Elect. Design Adv. Packag. Systems Symp., 2010.
[4] K. N., J. Mao, and J. Fan, 'Improving electromagnetic compatibility performance of packages and SiP modules using a conformal shielding solution,' in Asia-Pacific Int. Symp. Electronmagn. Compat., 2010, pp. 56-59.
[5] F. Jiang, M. Li, and L. Gao, 'Research on conformal EMI shielding Cu/Ni layers on package,' in Int. Conf. Electron. Packag. Tech., 2014, pp. 227-230.
[6] R. S. Mane and C. D. Lokhande, 'Chemical deposition method for metal chalcogenide thin films,' Mater. Chemistry Phy., vol. 65, pp. 1-31, Jan. 2000.
[7] P. C. Van Vegten, 'Shielding options for plastic enclosures,' in IEEE Regional Symp. Electromagn. Compat., 1992.
[8] C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd ed. Hoboken, New Jersey: John Wiley Sons, Inc., 2006.
[9] S. A. Schelkunoff, Electromagnetic Waves, New York: D.Van Nostrand Co., 1943.
[10] R. B. Schulz, V. C. Plantz, and D. R. Brush, 'Shielding theory and practice,' IEEE Trans. Electronmagn. Compat., vol. 30, pp. 187-201, Aug. 1988.
[11] P. R. Bannister, 'New Theoretical Expressions for Predicting Shielding Effectiveness for the Plane Shield Case,' IEEE Trans. Electromagn. Compat., vol. EMC-10, pp. 2-7, 1968.
[12] S. Celozzi, 'Shielding effectiveness prediction in MIL-STD 285 loop source configuration,' in IEEE Int. Symp. Electromagn. Compat., 1998, pp. 1125-1130.
[13] J. R. Moser, 'Low-Frequency Shielding of a Circular Loop Electromagnetic Field Source,' IEEE Trans. Electronmagn. Compat., vol. 9, pp. 6-18, Mar. 1967.
[14] J. R. Moser, 'Low-frequency low-impedance electromagnetic shielding,' IEEE Trans. Electronmagn. Compat., vol. 30, pp. 202-210, Aug. 1988.
[15] A. C. D. Whitehouse, 'Screening: new wave impedance for the transmission-line analogy,' Proc. Inst. of Elect. Eng., vol. 116, pp. 1159-1164, 1969.
[16] S. Dan, G. Yougang, and S. Yuanmao, 'Determination of Shielding Effectiveness of Multilayer Shield by Making Use of Transmission Line Theory,' in IEEE Int. Symp. Electromagn. Compat. Electromagn. Ecol., 2007, pp. 95-97.
[17] S. M. Yang, Chang, Y. Y., Hsieh, Y. C. and Lee, Y. J., 'Electromagnetic shielding effectiveness of multilayer metallic thin film on plastic substrates,' J. Appl. Polym. Sci., vol. 110, pp. 1403-1410, 2008.
[18] A. Massarini, U. Reggiani, and L. Sandrolini, 'Optimization of magnetic multilayered shields,' in IEEE Int. Symp. Electromagn. Compat., 2001, pp. 161-166.
[19] F. Han and L. Zhang, 'Degeneration of shielding effectiveness of planar shields due to oblique incident plane waves,' in IEEE Int. Symp. Electromagn. Compat., 1996, pp. 82-86.
[20] R. Araneo and S. Celozzi, 'Exact solution of the low-frequency coplanar loops shielding configuration,' IEE Proc.-Sci. Meas. Technol., vol. 149, pp. 37-44, 2002.
[21] R. G. Olsen, M. Istenic, and P. Zunko, 'On simple methods for calculating ELF shielding of infinite planar shields,' IEEE Trans. Electronmagn. Compat., vol. 45, pp. 538-547, Aug. 2003.
[22] R. Garbacz, 'Introduction to electromagnetic fields,' in IEEE Antennas Propag. Soci. Lett. vol. 24, ed, 1982, pp. 17-19.
[23] T. Yamaguchi, Okumura, Y. and Amemiya, Y., 'Wave impedance in the near field around the fundamental electromagnetic radiating elements,' Electron. Commun. Japan, vol. 74, pp. 86-95, Mar. 1991.
[24] D.M.Pozar, Microwave Engineering, 4th ed. Hoboken, New Jersey: John Wiley Sons, Inc.
[25] K. Kurokawa, 'Power Waves and the Scattering Matrix,' IEEE Trans. Microw. Theory Tech., vol. 13, pp. 194-202, Mar. 1965.
[26] D. A. Frickey, 'Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances,' IEEE Trans. Microw. Theory Tech., vol. 42, pp. 205-211, 1994.
[27] 'IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures,' in IEEE Std 299-2006 (Revision of IEEE Std 299-1997), ed, 2007, pp. 1-52.
[28] ANSYS reg; Academic Research, Release 15.0
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54087-
dc.description.abstract本論文主要針對系統級封裝的保角屏蔽技術評估近場屏蔽效果。透過利用磁場探針進行近場屏蔽效果之量測,並根據傳輸線理論及網路分析,提出一簡易評估屏蔽效果之傳輸線模型。此外,為驗證本文提出之預測方法,利用ANSYS HFSS模擬軟體的分層阻抗邊界條件之設定並將模擬資料作後處理,得以精準迅速地模擬複雜的薄膜屏蔽材料。本論文將詳盡討論使用保角屏蔽技術待測物的設計理念、等效傳輸線模型、及其模擬與量測結果。
本文將介紹如何設計一簡單系統級封裝模組,探討兩種走線於近場的輻射效益,並在線路末端串聯一匹配電阻以達到寬頻的量測設計。接著,分別探討單層及多層保角屏蔽之效果。在單層屏蔽方面,實作不同厚度的鍍銅及鍍鎳於待測物上;多層屏蔽方面,藉由相互堆疊的銅鎳材料探討不同厚度及層數間的遮蔽效果。本文提出之預測方法可快速評估單層及多層保角屏蔽的效益,跟模擬及量測相較下,從10兆赫茲到1千兆赫茲皆有很好的一致性。值得注意的是,由實驗結果發現,利用濺鍍技術鍍上薄膜於待測物上,將會使磁性材料失去原有磁性特性,因此需要修正其相對導磁率於模擬及傳輸線模型,亦顯示出對於磁性材料的鍍膜製程仍有改進空間。
最後,根據本文提出之傳輸線預測方法,設計一銅及鎳鐵合金材料交互堆疊之六層結構,理論上可於10兆赫茲達到35分貝的屏蔽效果,其總厚度僅12微米。此遮蔽效果相當於使用鍍單層50微米銅於待測物。
zh_TW
dc.description.abstractIn this thesis, a near-field shielding effectiveness (SE) is investigated to deal with the shielding performance of conformal shielding on system-in-package (SiP). By using a magnetic probe, the measurement of near-field SE is accomplished. Based on transmission-line theory and network analysis, a simple SE estimation using the transmission-line-based (TLB) model is proposed. Furthermore, to verify the proposed model, a simulation method called “layered impedance boundary” is set using ANSYS HFSS with post processing to accurately and readily solve the SE of complicated thin shielded SiP. The design procedure of conformally shielded SiP is demonstrated in detail, whereas the equivalent model, simulation, and measurement are proposed.
First of all, a simple SiP module is designed and two layout patterns are investigated to evaluate the near-field SE. To achieve a broadband testing, 50-Ω resistor is terminated at the end. Next, single- and multi-layered shielding structures are investigated separately. For single-layered shielding structures, different thicknesses of Cu and Ni are measured. On the other hand, multi-layered shielding structures are presented with Cu and Ni for different thicknesses and sequence arrangement. The proposed model could quickly evaluate the SE in single- and multi-layered shielding structures; moreover, it has a good consistency with simulation and measurement from 0.01 to 1 GHz. It is worth noting that the magnetic materials are sputtered as thin films on the DUT; however, it would lose its magnetic characteristics according to the experiment results. Consequently, the relative permeability of magnetic materials should be modified in the simulation and modeling. It implies that the manufacturing processes still require an improvement for coating magnetic materials.
Finally, by using the TLB modeling, 5-layered shielding structure composed of the staggered Cu and NiFe with a total thickness of 12 μm can achieve 35-dB SE at 10 MHz theoretically. For a single-layered design, 50-μm copper is required to get such a high SE.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:39:28Z (GMT). No. of bitstreams: 1
ntu-104-R02942025-1.pdf: 4183582 bytes, checksum: f2e736fa3c52fc67dcc488c6b01f77e0 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 v
中文摘要 vii
ABSTRACT ix
CONTENTS xi
LIST OF FIGURES xiii
LIST OF TABLES xvii
ACRONYMS xix
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Literature Review 2
1.3 Contribution 4
1.4 Thesis Organization 5
Chapter 2 Theoretic Analysis for Shielding Effectiveness (SE) 7
2.1 SE for Far-field Sources 8
2.2 SE for Near-field Sources 12
2.2.1 Type of Near-field Sources: Electric and Magnetic Sources 13
2.2.2 SE Derivation for Electric and Magnetic Sources 18
2.3 Transmission-line Based (TLB) Modeling 20
2.3.1 Equivalent Single-section Transmission-line Method 21
2.3.2 Modeling Scenario for Far-field Sources 26
2.3.3 Modeling Scenario for Near-field Sources 29
2.3.4 TLB SE Estimation 31
Chapter 3 Single-layered Conformal Shielding for EMI in System-in-Package (SiP) 33
3.1 Design of Test Samples 33
3.1.1 Overall Structure 33
3.1.2 Configurations of Layout Patterns 35
3.2 SE Estimation Using a Magnetic Probe 38
3.3 Equivalent Circuit Model 40
3.4 SE Comparison between Simulated and Measured Results 44
3.4.1 Setup of the Full-wave Simulation 44
3.4.2 Simulated Setup for SE estimation 48
3.4.3 SE Comparison 49
Chapter 4 Multi-layered Conformal Shielding and Design Optimization 57
4.1 Scenario and Equivalent Transmission-line Model 57
4.2 SE Comparison between Simulated and Measured Results 59
4.3 Design Guides and Optimization 66
Chapter 5 Conclusions 75
5.1 Conclusions 75
5.2 Suggestions for Future Works 75
REFERENCES 77
dc.language.isozh-TW
dc.subject相對磁導率zh_TW
dc.subject系統級封裝zh_TW
dc.subject屏蔽效果zh_TW
dc.subject保角屏蔽技術zh_TW
dc.subject傳輸線zh_TW
dc.subject單層保角屏蔽zh_TW
dc.subject多層保角屏蔽zh_TW
dc.subject相對磁導率zh_TW
dc.subject系統級封裝zh_TW
dc.subject屏蔽效果zh_TW
dc.subject保角屏蔽技術zh_TW
dc.subject傳輸線zh_TW
dc.subject單層保角屏蔽zh_TW
dc.subject多層保角屏蔽zh_TW
dc.subjectrelative permeabilityen
dc.subjectconformal shieldingen
dc.subjectsystem-in-package (SiP)en
dc.subjectshielding effectiveness (SE)en
dc.subjectmulti-layered shieldingen
dc.subjectconformal shieldingen
dc.subjecttransmission-line theoryen
dc.subjectsingle-layered shieldingen
dc.subjectrelative permeabilityen
dc.subjectmulti-layered shieldingen
dc.subjectshielding effectiveness (SE)en
dc.subjectsystem-in-package (SiP)en
dc.subjecttransmission-line theoryen
dc.subjectsingle-layered shieldingen
dc.title保角屏蔽封裝中近場遮蔽效應之量測與等效電路模型zh_TW
dc.titleModeling and Measurement of Near-field Shielding Effectiveness for Conformal Shielding in SiPen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馬自莊(Tzyh-Ghuang Ma),盧信嘉(Hsin-Chia Lu),許森貴(Sen-Kuei Hsu),王挺光(Ting-Kuang Wang)
dc.subject.keyword系統級封裝,屏蔽效果,保角屏蔽技術,傳輸線,單層保角屏蔽,多層保角屏蔽,相對磁導率,zh_TW
dc.subject.keywordconformal shielding,transmission-line theory,single-layered shielding,relative permeability,multi-layered shielding,shielding effectiveness (SE),system-in-package (SiP),en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2015-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved