Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬小康
dc.contributor.authorJui-Yu Linen
dc.contributor.author林芮宇zh_TW
dc.date.accessioned2021-06-16T02:39:23Z-
dc.date.available2015-07-23
dc.date.copyright2015-07-23
dc.date.issued2015
dc.date.submitted2015-07-23
dc.identifier.citation[1] H.K. Ma, B.R. Chen, J.J. Gao, and C.Y. Lin, 'Development of an OAPCP-micropump liquid cooling system in a laptop,' International Communications in Heat and Mass Transfer, vol. 36, pp. 225-232, 2009.
[2] W. Spencer, W. T. Corbett, L. Dominguez, and B. Shafer, 'An electronically controlled piezoelectric insulin pump and valves,' Sonics and Ultrasonics, IEEE Transactions on, vol. 25, pp. 153-156, 1978.
[3] H. Van Lintel, F. Van de Pol, and S. Bouwstra, 'A piezoelectric micropump based on micromachining of silicon,' Sensors and actuators, vol. 15, pp. 153-167, 1988.
[4] J. G. Smits, 'Piezoelectric micropump with three valves working peristaltically,' Sensors and Actuators A: Physical, vol. 21, pp. 203-206, 1990.
[5] R. Zengerle, A. Richter, and H. Sandmaier, 'A micro membrane pump with electrostatic actuation,' in Micro Electro Mechanical Systems, 1992, MEMS'92, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot. IEEE, 1992, pp. 19-24.
[6] E. Stemme and G. Stemme, 'A valveless diffuser/nozzle-based fluid pump,' Sensors and Actuators A: physical, vol. 39, pp. 159-167, 1993.
[7] A. Olsson, G. Stemme, and E. Stemme, 'A valve-less planar fluid pump with two pump chambers,' Sensors and Actuators A: Physical, vol. 47, pp. 549-556, 1995.
[8] M. Richter, R. Linnemann, and P. Woias, 'Robust design of gas and liquid micropumps,' Sensors and Actuators A: Physical, vol. 68, pp. 480-486, 1998.
[9] R. Linnemann, P. Woias, C.D. Senfft, and J. Ditterich, 'A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases,' in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on, 1998, pp. 532-537.
[10] A. Ullmann, 'The piezoelectric valve-less pump—performance enhancement analysis,' Sensors and Actuators A: Physical, vol. 69, pp. 97-105, 1998.
[11] A. Olsson, G. Stemme, and E. Stemme, 'A numerical design study of the valveless diffuser pump using a lumped-mass model,' Journal of Micromechanics and Microengineering, vol. 9, p. 34, 1999.
[12] W. van der Wijngaart, H. Andersson, P. Enoksson, K. Noren, and G. Stemme, 'The first self-priming and bi-directional valve-less diffuser micropump for both liquid and gas,' in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 2000, pp. 674-679.
[13] M. Khoo and C. Liu, 'A novel micromachined magnetic membrane microfluid pump,' in Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, 2000, pp. 2394-2397.
[14] J.H. Tsai and L. Lin, 'A thermal-bubble-actuated micronozzle-diffuser pump,' Microelectromechanical Systems, Journal of, vol. 11, pp. 665-671, 2002.
[15] J.H. Tsai and L. Lin, 'Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,' Sensors and Actuators A: Physical, vol. 97, pp. 665-671, 2002.
[16] P. Woias, 'Micropumps—past, progress and future prospects,' Sensors and Actuators B: Chemical, vol. 105, pp. 28-38, 2005.
[17] T. Zhang and Q.M. Wang, 'Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices,' Journal of Power Sources, vol. 140, pp. 72-80, 2005.
[18] K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, and W. Boda, 'Design and test of a high-performance piezoelectric micropump for drug delivery,' Sensors and Actuators A: Physical, vol. 121, pp. 156-161, 2005.
[19] E.G. Kim, J.g. Oh, and B. Choi, 'A study on the development of a continuous peristaltic micropump using magnetic fluids,' Sensors and Actuators A: Physical, vol. 128, pp. 43-51, 2006.
[20] J. Kan, K. Tang, G. Liu, G. Zhu, and C. Shao, 'Development of serial-connection piezoelectric pumps,' Sensors and Actuators A: Physical, vol. 144, pp. 321-327, 2008.
[21] C. R. de Lima, S. L. Vatanabe, A. Choi, P. H. Nakasone, R. F. Pires, and E. C. N. Silva, 'A biomimetic piezoelectric pump: Computational and experimental characterization,' Sensors and Actuators A: Physical, vol. 152, pp. 110-118, 2009.
[22] S. L. Vatanabe, A. Choi, C. R. de Lima, and E. C. N. Silva, 'Design and Characterization of a Biomimetic Piezoelectric Pump Inspired on Group Fish Swimming Effect,' Journal of Intelligent Material Systems and Structures, 2009.
[23] M. Nabavi, 'Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review,' Microfluidics and nanofluidics, vol. 7, pp. 599-619, 2009.
[24] M. Herz, D. Horsch, G. Wachutka, T. C. Lueth, and M. Richter, 'Design of ideal circular bending actuators for high performance micropumps,' Sensors and Actuators A: Physical, vol. 163, pp. 231-239, 2010.
[25] G.H. Feng and E. S. Kim, 'Micropump based on PZT unimorph and one-way parylene valves,' Journal of micromechanics and microengineering, vol. 14, p. 429, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54085-
dc.description.abstract本研究針對氣泡對於微型壓電式幫浦的影響做了詳盡的探討,並提出了一款新型的腔體設計以減少氣泡對於微型壓電式幫浦的影響。以壓電片作為此微型幫浦之致動元件,並以懸臂梁式閥作為腔體進出口處的控制元件。
為了找到此幫浦的最佳腔體深度,分別以六款不同深度的腔體於不同的致動器操作頻率下進行幫浦流量、自吸能力與氣泡忍受力的探討。在腔體深度為1.0mm與35Hz下,幫浦擁有最大的流量302.1ml/min;腔體深度為1.0mm與15Hz下有最短的自吸時間14s;並在15Hz與70Hz時擁有無限大的氣泡忍受力。此外,為探討氣泡對於此微型壓電式幫浦的影響,分別對此六款不同深度的腔體在不同致動器操作頻率下,打入不同體積的氣泡進行幫浦流量測試。
新型腔體利用氣泡選擇處於較低表面位能的原理,使得氣泡與水達到流道分離的效果,以避免氣泡對水的干擾。針對新型腔體重複上述測試並比較其與平面型腔體的差異,結果顯示新型腔體在相同的幫浦流量與自吸能力下,氣泡對於新型腔體之流量的影響明顯下降外,也擁有較高的流量穩定性,且新型腔體更是提升了大約100%的氣泡忍受力。
zh_TW
dc.description.abstractThis study makes a deep research into the impact of bubble on a bridge-type- check-valves piezoelectric micro-pump and develops an innovative chamber design to enhance its performance against bubble.
To find the optimum depth of chamber, the pumping flow-rate, self-priming ability and bubble tolerance at different actuating frequency are tested for six different depth of chambers. The results show that the micro-pump has a maximum flow-rate of 302.1ml/min at 35Hz and a shortest self-priming time at 15Hz with 1.0mm depth of chamber. An infinite bubble tolerance can also be found at both 15Hz and 70Hz. Besides, in order to have a complete understanding of the bubble impact on this kind of pump, different volume of bubbles are injected into the six different depth of chambers to test the flow-rates at different frequency.
Based on the principle of that bubble chooses to be in a lower surface-energy state, this innovative chamber design can separate the bubble’s channel from water’s one and avoid bubble influence on the flow of water in the micro-pump. After repeating the above test on the new chamber and comparing with the traditional plane chamber; the impact of bubble on the flow-rate is much reduced and the stability of the micro-pump is enhanced at the same flow-rate and self-priming time too. And, the bubble tolerance of this new kind of chamber is 100% more than the traditional one.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:39:23Z (GMT). No. of bitstreams: 1
ntu-104-R02522104-1.pdf: 4020568 bytes, checksum: 14119922f3601fb2162c4d18b20f083a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 幫浦與微型幫浦之簡介 1
1.3 壓電幫浦簡介 2
1.4 文獻回顧 4
1.5 研究動機與目的 21
1.6 研究流程 23
第二章 設計與原理 24
2.1 壓電幫浦之設計 24
2.1.1 腔體 25
2.1.2 閥件 26
2.1.3 防漏水結構 26
2.2 工作原理 27
2.3 理論分析 27
2.3.1 致動器位移分析 27
2.3.2 氣泡表面位能與壓力的關係 28
2.3.3 氣泡於腔體內的壓力分析 28
2.3.4 氣泡的緩衝效應 29
2.3.5 質量,彈簧與阻尼系統 31
2.3.6 壓電效應 35
2.4 新型腔體設計 37
2.4.1 中心圓盤形區域(水的主要流道) 38
2.4.2 圓盤形區域外圍之環狀流道(氣泡進入腔體時的流道) 38
2.4.3 進出口處外圍之環狀流道 39
第三章 實驗架構與方法 41
3.1 實驗參數 41
3.1.1 腔體深度 41
3.1.2 氣泡體積 41
3.1.3 壓電致動器操作頻率 42
3.1.4 新型腔體 42
3.2 實驗儀器 43
3.3 實驗架構 48
3.4 實驗測試方法 49
3.4.1 壓電幫浦組裝 49
3.4.2 不同腔體深度與新型腔體設計之幫浦流量與制動器操作頻率關係實驗 49
3.4.3 不同腔體深度與新型腔體設計於各操作頻率時的氣泡體積與幫浦流量關係實驗 51
3.4.4 不同腔體深度與新型腔體設計之致動器操作頻率與氣泡忍受力關係實驗 52
3.4.5 15Hz下不同腔體深度與新型腔體設計之幫浦自吸能力關係實驗 53
3.4.6 不同頻率下不同氣泡體積之平面腔體與新型腔體的流量穩定度實驗 54
第四章 結果與討論 55
4.1 腔體深度對流量的影響 55
4.2 腔體深度對氣泡進入時之流量及氣泡忍受力的影響 56
4.3 致動器操作頻率對氣泡忍受力的影響 62
4.4 腔體深度對自吸能力的影響 64
4.5 新型腔體設計對流量的影響 65
4.6 新型腔體設計對氣泡忍受力的影響 66
4.7 新型腔體設計對氣泡進入時之流量的影響 67
4.8 新型腔體設計幫浦穩定性的影響 71
第五章 結論與未來展望 73
5.1 結論 73
5.1.1 氣泡對於微型壓電式幫浦的影響 73
5.1.2 新型腔體設計對於氣泡進入時之幫浦性能的改善 73
5.2 建議與未來展望 74
參考文獻 76
dc.language.isozh-TW
dc.subject壓電式幫浦zh_TW
dc.subject氣泡zh_TW
dc.subject自吸能力zh_TW
dc.subject氣泡忍受度zh_TW
dc.subject表面位能zh_TW
dc.subject氣泡zh_TW
dc.subject壓電式幫浦zh_TW
dc.subject新型腔體zh_TW
dc.subject腔體深度zh_TW
dc.subject自吸能力zh_TW
dc.subject氣泡忍受度zh_TW
dc.subject腔體深度zh_TW
dc.subject表面位能zh_TW
dc.subject新型腔體zh_TW
dc.subjectself-priming abilityen
dc.subjectbubbleen
dc.subjectpiezoelectric micro-pumpen
dc.subjectinnovative chamber designen
dc.subjectdepth of chamberen
dc.subjectbubble toleranceen
dc.subjectsurface energyen
dc.subjectbubbleen
dc.subjectpiezoelectric micro-pumpen
dc.subjectinnovative chamber designen
dc.subjectdepth of chamberen
dc.subjectself-priming abilityen
dc.subjectbubble toleranceen
dc.subjectsurface energyen
dc.title降低氣泡於微型壓電式幫浦影響之創新腔體設計研究zh_TW
dc.titleStudy of Bubble Impact on Piezoelectric Micro-pump and Innovative Chamber Design against Bubbleen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴君亮,陳希立,吳文方
dc.subject.keyword氣泡,壓電式幫浦,新型腔體,腔體深度,自吸能力,氣泡忍受度,表面位能,zh_TW
dc.subject.keywordbubble,piezoelectric micro-pump,innovative chamber design,depth of chamber,self-priming ability,bubble tolerance,surface energy,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2015-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved