請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54081
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳炳煇(Ping-Hei Chen) | |
dc.contributor.author | Chun Chen | en |
dc.contributor.author | 陳駿 | zh_TW |
dc.date.accessioned | 2021-06-16T02:39:13Z | - |
dc.date.available | 2018-09-02 | |
dc.date.copyright | 2015-09-02 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-23 | |
dc.identifier.citation | [1] R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn,K.B.Mullis and H.A.Erlich, 'Primer-Directed Enzymatic Amplification of DNA with a
Thermostable DNA-Polymerase,' Science, vol. 239, pp. 487-491, 1988. [2] A. Manz, N. Graber, and H. M. Widmer, 'Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,' Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990. [3] W. Li, J. Greener, D. Voicu, and E. Kumacheva, 'Multiple Modular Microfluidic (M-3) Reactors for the Synthesis of Polymer Particles,' Lab on a Chip, vol. 9, pp.2715-2721, 2009. [4] M. Rhee and M. A. Burns, 'Microfluidic Assembly Blocks,' Lab on a Chip, vol. 8,pp. 1365-1373, 2008. [5] K. C. Bhargava, B. Thompson, and N. Malmstadt, 'Discrete Elements for 3D Microfluidics,' Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 15013-15018, 2014. [6] 劉達生, '樂高模組化微流元件應用於微流晶片之研究,' 博士, 機械工程學研究所, 國立臺灣大學, 2009. [7] 黃銘希, '模組化微流元件的優化與效能分析,' 碩士, 機械工程學研究所,國立臺灣大學, 2011. [8] 陳嘉偉, '可交換式模組化微流元件之設計與應用,' 碩士, 機械工程學研究所, 國立臺灣大學, 2013. [9] P. Chomczynski and N. Sacchi, 'Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate Phenol Chloroform Extraction,' Analytical Biochemistry, vol. 162, pp. 156-159, 1987. [10] J. McMurry, Organic Chemistry, 6th edition ed.: Brooks Cole, 2003. [11] K. S. Kirby, 'New Method for the Isolation of Ribonucleic Acids from Mammalian Tissues,' Biochemical Journal, vol. 64, pp. 405-408, 1956. [12] A. Gierer and G. Schramm, 'Infectivity of Ribonucleic Acid from Tobacco Mosaic Virus,' Nature, vol. 177, pp. 702-703, 1956. [13] www.bpi-tech.com. [14] K. A. Melzak, C. S. Sherwood, R. F. B. Turner, and C. A. Haynes, 'Driving Forces for DNA Adsorption to Silica in Perchlorate Solutions,' Journal of Colloid and Interface Science, vol. 181, pp. 635-644, 1996. [15] http://www.bio101.com/newsletter/august98/3.html. [16]http://en.wikipedia.org/wiki/File:Qiagen_Mini_Spin_Column.svg. [17] J. Ugelstad, K. H. Kaggerud, F. K. Hansen, and A. Berge, 'Absorption of Low-Molecular Weight Compounds in Aqueous Dispersions of Polymer-Oligomer Particles .2. Step Swelling Process of Polymer Particles Giving an Enormous Increase in Absorption Capacity,' Makromolekulare Chemie-Macromolecular Chemistry and Physics, vol. 180, pp. 737-744, 1979. [18] M. Uhlen, 'Magnetic Separation of DNA,' Nature, vol. 340, pp. 733-734, 1989. [19] S. Y. Lee, J. Lee, H. S. Lee, and J. H. Chang, 'Rapid Pathogen Detection with Bacterial-Assembled Magnetic Mesoporous Silica,' Biosensors & Bioelectronics, vol. 53, pp. 123-128, 2014. [20] M. M. Deangelis, D. G. Wang, and T. L. Hawkins, 'Solid-Phase Reversible Immobilization for The Isolation of PCR Products,' Nucleic Acids Research, vol. 23, pp. 4742-4743, 1995. [21] Roche, 'MagNA PURE LC Operator's Manual Version 3.0,' ed. [22] Y. C. Chung, M. S. Jan, Y. C. Lin, J. H. Lin, W. C. Cheng, and C. Y. Fan, 'Microfluidic Chip for High Efficiency DNA Extraction,' Lab on a Chip, vol. 4, pp. 141-147,2004. [23] Y. Zhang, S. Park, S. Yang, and T. H. Wang, 'An All-in-One Microfluidic Device for Parallel DNA Extraction and Gene Analysis,' Biomedical Microdevices, vol. 12, pp. 1043-1049, 2010. [24] Y. Zhang, S. Park, K. Liu, J. Tsuan, S. Yang, and T. H. Wang, 'A Surface Topography Assisted Droplet Manipulation Platform for Biomarker Detection and Pathogen Identification,' Lab on a Chip, vol. 11, pp. 398-406, 2011. [25] N. J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M. I. Newton, C. C. Perry and P.Roach,'The Use of High Aspect Ratio Photoresist (SU-8) for Super-Hydrophobic Pattern Prototyping,' Journal of Micromechanics and Microengineering, vol. 14, pp. 1384-1389, 2004. [26] http://www.dowcorning.com/. [27]http://commons.wikimedia.org/wiki/File:SYBR_Green_I_spectra.png. [28] M. H. C.Wittwer, K.Kaul, Rapid Cycle Real-Time PCR - Methods and Applications Quantification: Springer, 2004. [29] M. W. Pfaffl, 'Relative Quantification,' in Quantification Strategies in Real-Time PCR, S.A.Bustin, Ed., ed: International University Line, pp. 95-98, 2004. [30] C. J. Chen, H. I. Yang, J. Su, C. L. Jen, S. L. You, S. N. Lu, G. T. Huang and U. H.Iloeje 'Risk of Hepatocellular Carcinoma Across a Biological Gradient of Serum Hepatitis B Virus DNA Level,' Jama-Journal of the American Medical Association, vol. 295, pp. 65-73, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54081 | - |
dc.description.abstract | 本研究接續實驗室前人所開發的模組化微流元件,將其運用於細胞、病患檢體的微量DNA 萃取。傳統的 DNA 萃取方法必須使用定量滴管以及離心機搭配不同劑量的化學藥劑逐次將細胞裂解、DNA 聚合、細胞殘骸排除、蛋白質分解等等不同的功能,在化學環境下逐步清洗,最後再去除雜質後留下DNA。
然而,較近期的研究及產品則轉向於使用DNA 載具(二氧化矽薄膜或磁珠)來提高DNA 的萃取量。傳統的萃取方法中,因為DNA 分子本身具有帶電荷極性結構,在酒精的非極性環境中,DNA 分子會相互黏合在一起形成一個大型、肉眼可見的團塊。在沖洗細胞殘骸的過程中容易有化學試劑殘留或是DNA 片段被沖洗脫落造成損失等問題。然而,運用DNA 載具的優點是,將DNA 分子上帶有負電荷的磷酸鹽結構與二氧化矽分子在強離子環境下透過離子橋連接,形成一個強力的離子鍵結,這種方法能夠減少DNA 分子的遺漏,也可以透過載具清洗的方式把化學試劑的殘留量減少。 本研究將使用 PDMS(聚二甲基矽氧烷)做為模組的成型材料,在經過特定功能設計的鋁製模具中製作、組裝。模組運用微米磁珠做為DNA 載具,具有清洗DNA、分離液體預防交叉汙染、傳遞載具等功能。在模組化元件中達成微量DNA的萃取。相較於複雜且昂貴的MEMS 製程以及商用的大型儀器,使用模具可以快速生產具有競爭力的功能元件,其簡單且有效的操作方式有利於將此DNA 萃取方法快速推廣,而且模組化元件萃取結果的效率並不遜於精密的MEMS 微流晶片或已經商用的萃取方法。 未來,運用此優勢生產操作簡便且便宜的DNA 萃取模組,推廣至居家照護 用途(Point Of Care, POC),或是貧窮國家針對傳染性疾病的快速篩檢將相當具有潛力。 | zh_TW |
dc.description.abstract | The thesis will introduce the swappable fluidic module which was developed by the LAB senior, and it will be implemented on DNA extraction from the HBV Hepatitis B virus or human cells in this research.
The traditional DNA extraction method must use pipet and centrifuge for different chemical reagent preparation, then lysis cells, bind DNA, eliminate the cell debris and finally decompose the protein or other PCR inhibitor. After all the process above, we clean the samples step by step, then DNA fragment will finally remain in the solution. In standard DNA extraction method, since the DNA structure have the phosphate backbone on it, when the solution is in neutral condition, for example high concentration of ethanol, the DNA fragment will bind with each other, forming a big, visible aggregation. We utilize this property to extract the DNA from the cells, but it has some drawbacks because of the DNA fragment will be washed out or contaminating substance remained in the aggregation, it will lead to bad influence for the upcoming process. However, the recent research and commercial approach turn to use the DNA carrier such as Silicon dioxide membrane or magnetic beads to enhance the DNA extraction efficiency. To resolve the problems mentioned above, scientist developed the DNA carrier method to bind DNA stronger than before. The DNA carriers are coated with silicon dioxide on it, when the carrier and DNA are in the strongly ionized environment, the ion will bind the phosphate backbone and SiO2 together, forming a strong ion-bind between them. By this method, it can reduce the quantity of washed out DNA and enhance the purity of solution after washing steps. We will use PDMS(poly-dimethylsiloxane) as the material to manufacture the specially designed modules. These modules have the functions such as washing DNA, separating the reagents and transporting the beads. By the development of DNA carrier magnetic beads, we can perform the DNA extraction on our newly released method. Comparing to the complex and expensive MEMS chip or commercial machine, our modules can be manufactured at fast speed and low cost. The easy-handled and functional modules can be promoted to the public easily. Besides, the DNA extracted by module have the great efficiency compared to the commercial methods. In the future, it can promote to the point-of-care POC platform or even use it to diagnose the infectious illness in remote area or bad medical condition place. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:39:13Z (GMT). No. of bitstreams: 1 ntu-104-R02522319-1.pdf: 3850773 bytes, checksum: 38a07ad6e664d3ff6cb6cf77c5b3b1d1 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 第一章
緒論...1 1.1 前言... 1 1.2 研究背景與文獻回顧...3 1.2.1 模組化微流元件...3 1.2.2 DNA 萃取...11 1.2.3 DNA 萃取晶片...19 1.3 研究動機與目的...23 第二章模組化微流元件開發與製作...26 2.1 元件的翻模製程...26 2.2 第一代DNA 萃取用微流元件 ...28 2.3 第二代DNA 萃取用微流元件 ...33 2.4 第三代DNA 萃取用微流元件 ...38 2.4.1 第三代元件之開發設計...38 2.4.2 第三代元件之製作方式...45 第三章實驗藥品與設備...49 3.1 模組化微流元件...49 3.1.1 化學藥品...49 3.2.2 設備...49 3.2 DNA 萃取操作 ...51 3.2.1 化學藥品...51 3.2.2 設備...52 3.3 DNA 萃取液之PCR 檢測 ...53 3.3.1 聚合酶鍊鎖反應PCR 試劑 ...53 3.3.2 凝膠電泳分析藥品...55 3.3.3 設備...56 第四章實驗方法...60 4.1 模組化微流元件應用於DNA 之萃取 ...60 4.1.1 Tex – 實驗方法與步驟 ...62 4.1.2 Mex – 實驗方法與步驟 ...63 4.2 PCR 試劑配製以及Roche LightCycler2.0 參數設定 ...64 4.3 洋菜凝膠電泳檢測與數位照膠分析...67 第五章實驗結果與討論...69 5.1 高濃度血清-萃取功能試驗...69 5.2 萃取元件重複性驗證...71 5.3 萃取靈敏度測試...74 第六章結論與未來展望...78 6.1 結論...78 6.2 未來展望...80 References ...81 | |
dc.language.iso | zh-TW | |
dc.title | 可交換式模組化微流元件運用於細胞核酸之萃取技術 | zh_TW |
dc.title | Development of The Swappable-Modular Micro-Fluidic Device
Used in DNA Extraction Technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊馥菱(Fu-Ling Yang),陳瑤明(Yau-Ming Chen) | |
dc.subject.keyword | 居家照護用途,模組化微流元件,DNA 萃取,磁珠載具,鋁製模具, | zh_TW |
dc.subject.keyword | point-of-care POC,micro-fluidic device,modular micro-fluidic device,DNA extraction, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-23 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。