請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張正琪(Cheng-Chi Chang) | |
| dc.contributor.author | Shih-Wen Chen | en |
| dc.contributor.author | 陳世彣 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:39:01Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-23 | |
| dc.identifier.citation | References 1. Sporn,M.B, The war on cancer, Lancet, 1996, 1377–1381. 2. Thomas N.Seyfried, Roberto E.Flores, Angela M.Poff1 and Dominic P.D’Agostino1Fidler,I.J, The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited, Nat. Rev , 2014, 515-527. 3. Lazebnik,Y, What are the hallmarks of cancer? Nat. Rev, 2010, 232–233. 4. Tarin,D, Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance, Cancer Biol, 2011, 72–82. 5. Boyle P, Veronesi U, Tubiana M, Alexander FE, da Silva F, Denis LJ, European school of oncology advisory report to the European commission for the ‘European against cancer programme’ European code against cancer, Eur J Cancer, 1995, 1395-1405. 6. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer, Oral Oncology, 2009, 309-316. 7. Wutzl A, Ploder O, Kermer C, Millesi W, Ewers R, Klug C, Mortality and causes of death after multimodality treatment for advanced oral and oropharyngeal cancer, Journal of Oral and Maxillofacial Surgery, 2007, 255-260. 8. Fidler IJ, The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited, Nature Reviews Cancer, 2003, 453-458 9. Steeg PS, Tumor metastasis: mechanistic insights and clinical challenges, Nature Medicine, 2006, 895-904 10. Ambros V, The function of animal microRNAs, Nature, 2004, 350-355 11. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, CA Cancer J Clin. 2009, 225–249. 12. Lin BR, Chang CC, Chen JC, Jeng YM, Liang JT, Lee PH, Chang KJ, Kuo ML, Connective tissue growth factor acts as a therapeutic agent and predictor for peritoneal carcinomatosis of colorectal cancer, Clin Cancer Res, 2011, 3077-3088. 13. Lin BR, Chang CC, Che TF, et al. Connective tissue growth factor inhibits metastasis and acts as an independent prognostic marker in colorectal cancer. Gastroenterology. 2005, 9–23. 14. Manfredi S, Bouvier AM, Lepage C, Hatem C, Dancourt V, Faivre J. Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. Br J Surg. 2006, 1115–1122. 15. Lin BR, Huang MT, Chen ST, Jeng YM, Li YJ, Liang JT, Lee PH, Chang KJ and Chang CC, prognostic significance of TWEAK expression in colorectal cancer and effect of its inhibition on invasion, Annals of Surgical Oncology, 2012, 385–394. 16. de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol, 2010, 3380–3387. 17. Cottrell S, Bicknell D, Kaklamanis L, Bodmer WF. Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas. Lancet, 1992, 626–630. 18. Parkin DM, Bray F, Ferlay J, Pisani P, Global cancer statistics, CA: Journal for Clinicans, 2005, 74-108. 19. Negri E, La Vecchia C, Franceschi S, Tavani A, Attributable risk for oral cancer in northern Italy, Cancer Epidemiology, Biomarkers Prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 1993, 189-193 20. de Souza JA, de Lima Lopes G, Cohen EE. Pharmacoeconomic issues in head and neck oncology. Curr Opin Oncol 2013, 213-217. 21. Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lef egrave;bvre JL, Greiner RH, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med , 2004, 1945-1952. 22. Galbiatti AL, Padovani-Junior JA, Man iacute;glia JV, Rodrigues CD, Pavarino Eacute;C, Goloni-Bertollo EM. Head and neck cancer: causes, prevention and treatment. Braz J Otorhinolaryngol, 2013, 239-247. 23. Dobrossy L. Epidemiology of head and neck cancer: magnitude of the problem. Cancer Metastasis Rev, 2005, 9-17. 24. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin, 2004, 8-29. 25. Cognetti DM, Weber RS, Lai SY. Head and neck cancer: an evolving treatment paradigm. Cancer, 2008, 1911-1932. 26. Dries Verdegem, Stijn Moens, Peter Stapor, et al. Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol, 1998, 901–909. 27. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB:, Cancer is a preventable disease that requires major lifestyle changes. Pharm Res, 2008, 2097-2116. 28. Bailar JC, Gornik HL, Cancer undefeated, N Engl J Med, 1997, 1569-1574. 29. Douglas Hanahan, and Robert A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell Review, 2011, 201-210 30. Warburg, O, On the origin of cancer cells, Science, 1956, 123, 309–314. 31. Warburg, O, On respiratory impairment in cancer cells, Science, 1956, 124, 269–270. 32. Morris A. Kostiuk, Bernd O. Keller, and Luc G. Berthiaume, et al. Palmitoylation of ketogenic enzyme HMGCS2 enhances its interaction with PPARa and transcription at the Hmgcs2 PPRE. FASEB J, 2010, 1914-1924. 33. Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, et al. Energy transfer in “parasitic” cancer metabolism: mito- chondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle, 2011, 4208-4216; 34. Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab, 2012, 4-5 35. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and can- cer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol, 2012, 423-467 36. Ubaldo E. Martinez-Outschoorn, Zhao Lin, Diana Whitaker-Menezes, et al. Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 2012, 3956–3963. 37. Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, et al. Stromal- epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvi- ronment. Int J Biochem Cell Biol, 2011, 1045-1051 38. Ubaldo E. Martinez-Outschoorn, Zhao Lin, Diana Whitaker-Menezes, Anthony Howell, Federica Sotgia, and Michael P. Lisanti, Ketone body utilization drives tumor growth and metastasis, Cell Cycle, 2012, 3964–3971 39. Miller DN, Bazzano G; Bazzano, Propanediol metabolism and its relation to lactic acid metabolism, Ann NY Acad Sci, 1965, 957–973. 40. A.M. Robinson, D.H. Williamson, Physiological roles of ketone bodies as ubstrates and signals in mammalian tissue, Physiol. Rev, 1980, 143-187. 41. R. Aledo, J. Zschocke, J. Pie, C. Mir, S. Fiesel, E. Mayatepek, G.F. Hoffmann, N. Casals, F.G. Hegardt, Genetic basis of mitochondrial HMG-CoA synthase deficiency, Hum. Genet, 2001, 19-23. 42. Ubaldo E. Martinez-Outschoorn, Zhao Lin, Diana Whitaker-Menezes, Anthony Howell, and Michael P. Lisanti, Ketone body utilization drives tumor growth and metastasis, Cell Cycle, 2012, 3964-3971. 43. Punit Saraon, Daniela Cretu, Natasha Musrap, George S. Karagiannis, Ihor Batruch, Andrei P. Drabovich, Theodorus van der Kwast, Atsushi Mizokami, Colm Morrissey, Keith Jarvi, and Eleftherios P. Diamandis, Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression, Molecular Cellular, 2013, 920-941 44. Silva CM. Role of stats as downstream signal transducers in Src family kinasemediated tumorigenesis, Oncogene, 2004, 8017-8023 45. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase Akt pathway in human cancer, Nat Rev Cancer, 2002, 489-501 46. Ram PT, Iyengar R. G protein coupled receptor signaling through the Src and stat3 pathway: Role in proliferation and transformation, Oncogene, 2001, 1601-1606 47. Nakagawa T, Tanaka S, Suzuki H, et al. Overexpression of the csk gene suppresses tumor metastasis in vivo, Int J Cancer, 2000, 384-389 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54076 | - |
| dc.description.abstract | 中文摘要 實驗目的:目前已知3-Hydroxy-3-methylglutaryl-CoA Synthase 2 (HMGCS2)基因表現量與癌症病患之癌症惡性度成正相關,但目前機制並不明確。本實驗為探討酮體生成酵素HMGCS2對於大腸癌與口腔癌進成之效應,及釐清HMGCS2透過何種訊息傳遞影響大腸癌與口腔癌之腫瘤進程。 實驗設計:利用即時定量聚合酶連鎖反應(Q-PCR)檢測癌症病人檢體中HMGCS2基因之表現與臨床病徵之關聯性。藉由西方墨點法(Western bloot)探討HMGCS2內生性蛋白質之表現與癌細胞惡性度之相關性。使用細胞移行與浸襲實驗(Migration and Invasion Assay)探討HMGCS2對於癌細胞移行與浸襲之影響。建立肝轉移小鼠動物模式探討HMGCS2對於癌細胞轉移之效應。 實驗結果:臨床檢體分析結果發現,HMGCS2基因表現量與大腸癌與口腔癌病患之癌症惡性度、癌症轉移能力與癌症復發成正相關。細胞實驗中發現,HMGCS2內生性蛋白質表現量與大腸癌與口腔癌細胞株之惡性程度成正相關。高度表現內生性HMGCS2蛋白質之細胞株中,將其剔除會抑制癌細胞轉移能力與浸襲能力;低表現內生性HMGCS2蛋白質之細胞株中,將其過度表現則會促進癌細胞轉移能力與浸襲能力;但HMGCS2蛋白質表現量不會影響癌細胞之細胞增生能力。動物實驗中,將DLD1細胞株之HMGCS2剔除會降低其在肝轉移小鼠動物模式中之轉移能力。利用微小核醣核酸陣列與生物資訊學認為Src可能為HMGCS2之下游主要調控因子。將Src在穩定表現HMGCS2之癌細胞中剔除,會抑制HMGCS2促進之細胞移行和浸襲能力,但不會影響癌細胞之細胞增生能力。 結論:HMGCS2可以透過Src訊息傳遞促進大腸癌與口腔癌之移行能力與浸襲能力。HMGCS2可以當作大腸癌與口腔癌之臨床預後指標,為大腸癌與口腔癌之治療方針。 關鍵字:大腸直腸癌、口腔鱗狀上皮細胞癌、移行、浸襲、酮體生成酵素HMGCS2 | zh_TW |
| dc.description.abstract | Abstract Purpose: Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) is the rate-limiting enzyme of ketogenesis. This metabolic reaction is highly related to advanced TNM stage and early recurrence in colorectal cancer (CRC) and oral squamous cell carcinoma (OSCC). However, the effects of HMGCS2 in CRC and OSCC progression are largely unknown. We hypotheses that HMGCS2 could interfere cancer metabolism and regulate tumor progression. Material and Method: Colon cancer and oral cancer cell lines were used as in vitro models to investigate cell phenotypes, including migration, invasion, and proliferation by HMGCS2 shRNA knockdown. Boyden chamber assay were performed to check migration and invasion abilities. Proliferation ability was identified by MTT assay. 3-Hydroxybutyrate was measured by ketone body assay. Mice were splenic injected with shHMGCS2-silencing or pLKO control DLD1 cells to metastasis ability. Results: Here, we showed that HMGCS2 enhanced cancer cell migration and invasion abilities via ketogenesis-independent manner in vitro. Knocked-down HMGCS2 significantly decreased CRC metastasis ability in hepatic animal model. Using high through-put microarray assay and bioinformatic analysis, we identified Src as a crucial downstream effecter of HMGCS2-promoted CRC and OSCC progression. Src mRNA and protein expression levels were significantly diminished in silenced-HMGCS2 clones, and knocked-down Src could re-inhibited migration and invasion abilities in HMGCS2 stable transfectants. Conclusion: Taken together, we discovered a novel role of HMGCS2 which could promote CRC and OSCC cell migration and cell invasion abilities through Src signaling pathway. This target oncogene, HMGCS2, may play as a prognosis marker in CRC and OSCC, and will be beneficial for developing therapeutic strategy against advanced CRC and OSCC in the future. Key words:Oral cancer, Colorectal cancer, Migration, Invasion, HMGCS2, Src | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:39:01Z (GMT). No. of bitstreams: 1 ntu-104-R02450002-1.pdf: 3569925 bytes, checksum: 41c0916e92e4cfd142e1f4240a805a6b (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents 口試委員審定書...............................................................i 致謝........................................................................ii 中文摘要...................................................................iii Abstract.....................................................................iv Contents....................................................................vi Introduction...................................................................1 Material and Method............................................................6 Results......................................................................13 Discussion...................................................................19 Reference...................................................................22 Figures......................................................................29 Table.......................................................................47 | |
| dc.language.iso | en | |
| dc.subject | 浸襲 | zh_TW |
| dc.subject | 酮體生成酵素HMGCS2 | zh_TW |
| dc.subject | 移行 | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 口腔鱗狀上皮細胞癌 | zh_TW |
| dc.subject | Migration | en |
| dc.subject | Src | en |
| dc.subject | HMGCS2 | en |
| dc.subject | Invasion | en |
| dc.subject | Colorectal cancer | en |
| dc.subject | Oral cancer | en |
| dc.title | 酮體生成酵素HMGCS2對於癌症進程之效應 | zh_TW |
| dc.title | The Effects of 3-Hydroxy-3-methylglutaryl-CoA Synthase 2 in Cancer Progression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 江俊斌(Chun-Pin Chiang) | |
| dc.contributor.oralexamcommittee | 楊慕華(Muh-Hwa Yang),林本仁(Ben-Ren Lin),朱家瑜(Chia-Yu Chu) | |
| dc.subject.keyword | 大腸直腸癌,口腔鱗狀上皮細胞癌,移行,浸襲,酮體生成酵素HMGCS2, | zh_TW |
| dc.subject.keyword | Oral cancer,Colorectal cancer,Migration,Invasion,HMGCS2,Src, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-23 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
