請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬鴻文(Hwong-wen Ma) | |
| dc.contributor.author | Chih-Yu Chang | en |
| dc.contributor.author | 張芷瑀 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:38:47Z | - |
| dc.date.available | 2020-07-29 | |
| dc.date.copyright | 2015-07-29 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-23 | |
| dc.identifier.citation | 1. Abel Wolman. 1965 . The metabolism of cities.
2. Barrett, J., H. Vallack, A. Jones, and G. Haq. 2002.A material flow analysis and ecological footprint of York. Technical report. Stockholm, Sweden:Stockholm Environment Institute. 3. BFF (Best Foot Forward). 2002. City limits: A resource flow and ecological footprint analysis of Greater London. www.citylimitslondon.com/ downloads/Complete%20report.pdf. Accessed March 2007. 4. Brunner, P., H. Daxbeck, and P. Baccini. 1994. Industrial metabolism at the regional and local level: A case-study on a Swiss region. In Industrial metabolism: Restructuring for sustainable development, edited by R. U. Ayres and U. E. Simonis. Tokyo: United Nations University Press. 5. Burstr‥om, F., B. Frostell, and U. Mohlander. 2003. Material flow accounting and information for environmental policies in the city of Stockholm. Paper presented at the workshop Quo vadis MFA? Material Flow Analysis—Where Do We Go? Issues,Trends and Perspectives of Research for Sustainable Resource Use, 9–10 October, Wuppertal,Germany. 6. Blowers, A (ed). 1993. Planning for a Sustainable Environment Earthscan, London. 7. C. Kennedy, J. Cuddihy, J. Engel-Yan. 2007.The changing metabolism of citiesJournal of Industrial Ecology, 11 (2007), pp. 43–59. 8. C. Hendriks, R. Obernosterer, D. Muller, S. Kytzia, P. Baccini, P.H. Brunner. 2000.Material flow analysis: a tool to support environmental policy decision making. Case-studies on the city of Vienna and the Swiss lowlands.Local Environment: The International Journal of Justice and Sustainability, 5 (2000), pp. 311–328. 9. C. L. Huang, J. Vause, H. W. Ma, and C. P. Yu, 'Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook,' Resources Conservation and Recycling, vol. 68, pp. 104-116, 2012. 10. D McQueen, H Noack - Health Promotion International. 1988.Oxford Univ Press. 11. Douglas, I. and Lawson, N. 1998.Urban metabolism, materials flows and sustainable development: a geoenvironmental prespective. Paper presented to the 4th International Symposium on Environmental Geotechnology and Global Sustainable Development, Boston (Danvers), Massachusetts. 12. European Concrete Platform (ECP). 2009.Sustainable benefits of concrete structures. 13. Hammer, M., S. Giljum, and F. Hinterberger.2003. Material flow analysis of the city of Hamburg: Preliminary results. Paper presented at the workshop Quo vadis MFA? Material Flow Analysis—Where Do We Go? Issues,Trends and Perspectives of Research for SustainableResource Use, 9–10 October, Wuppertal,Germany. 14. Hendriks, C., D. M‥uller, S. Kytzia, P. Baccini, and P.Brunner. 2000. Material flow analysis: A tool to support environmental policy decision making. Case-studies on the city of Vienna and the Swiss lowlands. Local Environment 5(3): 311–328. 15. H. Girardet.The metabolism of cities.D. Cadman, G. Payne (Eds.). 1990.The Living City: Towards a Sustainable Future, Routledge, London (1990), pp. 170–180. 16. H. Girardet. 1992.Cities: New Directions for Sustainable Urban Living. 17. H.R. Sahely, S. Dudding, C.A. Kennedy. 2003.Estimating the urban metabolism of Canadian cities: GTA case studyCanadian Journal for Civil Engineering, 30 (2003), pp. 468–483. 18. Irish Concrete Federation (ICF). 2009. Available at: http://www.irishconcrete.ie/. 19. Ian Burton . 1987.Our Common Future:The World Commission on Environment and Development. 20. M. Sharfman, 'Industrial Ecology, by T. E. Graedel and B. R. Allenby. Englewood Cliffs, NJ: Prentice Hall, 1995.,' The Academy of Management Review, vol. 20, pp. 1090-1094, 1995. 21. Organization for Economic Cooperation and Development. 1994.Seattle's Comprehensive Plan. 22. OECD, 1990. Environmental Policies for Cities in the 1990s. OECD, Paris, France. 23. P. H. Brunner and H. Rechberger, Practical Handbook of MATERIAL FLOW ANALYSIS: LEWIS PUBLISHERS, 2004. 24. P.H. Brunner. 2007.Reshaping urban metabolism.Journal of Industrial Ecology, 11 (2007), pp. 11–13. 25. Rachel Woodward, Noel Duffy. 2010. Cement and concrete flow analysis in a rapidly expanding economy:Ireland as a case study. 26. Ress, W. E. and Wackernagel, M. 1994. Ecological Footprint and Appropriated Carrying Capacity: Measuring the Natural Capital Requirements of the Human Economy. Investing in Natural Capital. pp.362-390. 27. Samuel Niza, Leonardo Rosado, and Paulo Ferr˜ao. 2009. Urban Metabolism: Methodological Advances in Urban Material Flow Accounting Based on the Lisbon Case Study. 28. Shu-Li Huang, , Wan-Lin Hsu. 2003. Materials flow analysis and emergy evaluation of Taipei’s urban construction. 29. Schulz,N. B. 2007. The direct material inputs into Singapore’s development. Journal of Industrial Ecology11(2): 117–131. 30. S.P. Tjallingii. 2003.Ecopolis: Strategies for Ecologically Sound Urban Development Backhuys Publishers, Leiden (2003). 31. Yan Zhang. 2013. Urban metabolism: A review of research methodologies. 32. 彭建文、蔡怡純,2012,住宅負擔能力與住宅自有率之長期關係─追蹤資料共整合分析應用,住宅學報,第二十一卷第二期。 33. 馬鴻文,永續物質管理,財團法人中技社,頁5-22,2011。 34. 何泰源、吳文隆、詹穎裕,2005,洲美快速道路堤防段工程應用EPS輕質填土案例探討,中華技術,第68期。 35. 李彥頤,2002,生態城市的綠風水,科學發展,第478期。 36. 黃書禮,1996,生態能量觀之都市系統進化研究,國立中興大學都市計劃研究所。 37. 黃書禮、徐婉玲,2001,台北地區都市建設代謝作用物質流分析與能值評估。 38. 邱佳淳,2012,新建建築工程大宗材料用量分析之研究,國立中央大學營建管理研究所,碩士論文。 39. 邱太 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54070 | - |
| dc.description.abstract | 都市代謝是指因都市各式產業活動,以及居民居住、工作、飲食育樂等活動,所帶動的各種物質以不同貨物的型式流動,其中流通量最大量也造成對應環境負荷的是營建材料,係用於居住、工商服務、與公共建設,有需要系統性的視野來,分析這些物質如果經過生產、消費、轉換後再從都市釋出的過程。台灣已近1/3人口居住於大台北地區,都市代謝隨著都市成長的脈動而變化,隨著都市建設與人口成長需求,更加倚賴從外地供應的資源,亦累積大量的物質,未來將成為廢棄物或新的資源。都市代謝分析需要一個系統性的框架,以量測和解析資源投入的趨勢,對於都市消費、廢棄物處置、與都市社會經濟的永續發展有何關聯性。
本研究以台北市及新北市十年間之水泥與砂石相關之物質流的變化描繪動態的都市代謝現象,並探討與相關都市社會經濟活動的關係,代謝標的物質為水泥及砂石兩種物質,調查的系統範圍含蓋各式營建工程,包括公共工程(包含道路、橋樑、防洪、管線、捷運工程)及建築工程兩個子系統,盤查各系統程序的物質流,並解析都市代謝趨勢與過去都市政策、社會經濟因子的關係。另外,運用指標比較兩都市,兩物質的代謝密集度,並計算水泥、砂石在都市建設的二氧化碳排放當量。 結果顯示兩市之水泥砂石代謝,以建築工程為主要驅動力,其次為道路改善維護工程,另一方面平均每年產生447噸之營建混凝土廢棄物。回顧過去的發展政策與社會經濟趨勢,建築工程建案會受到如全球金融風暴、歐債危機及政府都市政策影響,而道路工程會因建設、選舉前夕及路平專案計畫等,使工程數量增多。在環境面,都市水泥砂石代謝所導致的材料製程碳排放以建築工程為大宗,主要來自水泥生產過程。未來營建廢棄物處置將是一個問題。建議政府針對改變建築結構、提高閒置空間再利用率、檢討道路政策、共同管道設置、營建廢棄物處置問題等,以提升都市代謝效率的永續性。 | zh_TW |
| dc.description.abstract | Urban metabolism is the manifestation of dynamic materials of city, including the processes of import, supply, transformation, consumption, export, and other activities involving the flow of materials. Different processes are required to sustain a city. One-third of Taiwan population live in the Taipei metropolis. Since Taipei and New Taipei City have expanded dramatically, especially, the construction activities have consumed massive materials that were imported from other areas. Cities are also accumulating massive stock of materials which will turn into waste or secondary resource. An analytical framework of urban metabolism is essential for the sustainable development of cities.
This research aims to measure the flows in an urban metabolic system and analyze the social-economic factors which led to the increase of consumption of cement, sand and gravels. This understanding is the basis to formulate the strategies to alleviate the pressure of resource consumption, waste generation and CO2 emission, in terms of long term urban sustainability. In my study, the material flow analysis were implemented to investigate the metabolism of Taipei city and New Taipei city. Cement, sand and gravel are chosen for the focus of the analysis because they are the major material in construction industry. The material flow system is composed of two subsystems that are infrastructure (such as road, bridge, flood prevention projects, MRT, piping,) and construction of buildings. The data collected for Taipei metropolis ranges from 2004 to 2013. To understand the factors which drives the urban metabolic activities, this research examined urban development policies and several socioeconomic factors for their possible influences on the variation of urban metabolism. Several indicator are calculated to measure carbon footprint, generation of demolition waste and intensity of material consumption. The results show that the top consumption of construction material in the Taipei metropolis is dominated by the construction of buildings, the second one is road improvement and road maintenance. Every year, about 447 metric tons waste concrete were generated in the last decade. The factors of major influence on the metabolism includes the financial crisis in 2007 to 2008, Eurozone debt crisis and emergence of new urban zoning. It was found that the road work increased dramatically due to Road-smoothing project and short term urban construction which might be influenced by the election. The manufacture of cement accounts for the most of CO2 emission, the main driver of CO2 emission is the need for construction new buildings in both cities. An issue is how to face current material stock after the demolition as waste in the future. For the solutions of sustainable urban metabolism, the cities should transition the construction of buildings toward the structure types of less environmental pressure of build. Also, current unoccupied indoor spaces should be used more efficiently. Auditing on the necessity and frequency of road maintenance should be implemented, build common duct, deal with waste concrete disposal for urban metabolism efficiency rises. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:38:47Z (GMT). No. of bitstreams: 1 ntu-104-R02541210-1.pdf: 3286870 bytes, checksum: bd4b76c3db372a6646ac58dabeb6127f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 委員審定書 i
誌謝 ii 摘要 II ABSTRACT 1 表目錄 5 圖目錄 6 第一章 緒論 8 1.1 研究動機 8 1.2 研究目的 9 1.3 研究流程 10 第二章 文獻回顧 11 2.1 都市代謝與永續發展 11 2.1.1 永續發展與永續都市 11 2.1.2 都市代謝方法與分析案例 14 2.1.3 物質流分析介紹 21 2.1.4 水泥砂石物質流分析之應用與案例 24 2.2 台北市及新北市都市代謝意涵與自然社經現況 26 2.2.1 台北市及新北市都市代謝意涵 26 2.2.2 台北市及新北市自然社經現況 28 2.2.3 台北市與新北市都市計畫歷程 36 2.3 水泥與砂石相關產業介紹 44 2.3.1 營建產業介紹 44 2.3.2 混凝土產業介紹 46 2.3.3 水泥產業介紹 48 2.3.4 砂石產業介紹 52 第三章 研究方法 55 3.1 水泥與砂石物質流分析 55 3.1.1 研究目標及系統範疇界定 55 3.1.2 水泥盤查模式建立 59 3.1.3 砂石盤查模式建立 66 3.1.4 營建廢棄物推估 73 3.2 都市水泥砂石代謝永續性指標 74 3.2.1 碳足跡 74 3.2.2 主要都市代謝流向指標 78 第四章 結果與討論 80 4.1 2004年及2013年水泥、砂石都市代謝比較 80 4.2 主要都市代謝流向的趨勢分析 85 4.2.1 主要都市代謝流向的趨勢走向 85 4.2.2 建議 98 4.3 水泥、砂石都市代謝指標結果 100 4.3.1 環境衝擊碳足跡結果 100 4.3.2 主要都市代謝資源耗用相關指標 111 第五章 結論與建議 116 5.1 結論 116 5.2 建議 118 參考文獻 119 | |
| dc.language.iso | zh-TW | |
| dc.subject | 物質流分析 | zh_TW |
| dc.subject | 都市發展 | zh_TW |
| dc.subject | 都市代謝 | zh_TW |
| dc.subject | 碳足跡 | zh_TW |
| dc.subject | 水泥 | zh_TW |
| dc.subject | 砂石 | zh_TW |
| dc.subject | 社經影響因子 | zh_TW |
| dc.subject | socioeconomic factors | en |
| dc.subject | urban metabolism | en |
| dc.subject | urban development | en |
| dc.subject | material flow analysis | en |
| dc.subject | carbon footprint | en |
| dc.subject | cement | en |
| dc.subject | sand and gravel | en |
| dc.title | 水泥與砂石的都市代謝分析 | zh_TW |
| dc.title | The Urban Metabolism of Cement and Gravel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李公哲(Kung-Cheh Li),張慶源(Ching-Yuan Chang) | |
| dc.subject.keyword | 都市代謝,物質流分析,都市發展,碳足跡,水泥,砂石,社經影響因子, | zh_TW |
| dc.subject.keyword | urban metabolism,urban development,material flow analysis,carbon footprint,cement,sand and gravel,socioeconomic factors, | en |
| dc.relation.page | 127 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
