Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54060
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳
dc.contributor.authorYu-Chuan Chienen
dc.contributor.author簡鈺娟zh_TW
dc.date.accessioned2021-06-16T02:38:24Z-
dc.date.available2025-12-31
dc.date.copyright2015-08-31
dc.date.issued2015
dc.date.submitted2015-07-23
dc.identifier.citationChapter 1
[1] Choi, Y. S.; Kang, J. W.; Hwang, D. K.; Park, S. J., Recent advances in ZnO-based
light-emitting diodes. IEEE Transactions on Electron Devices 2010, 57 (1), 26-41.
[2] Liang, H. K.; Yu, S. F.; Yang, H. Y., Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. Applied Physics Letters 2010, 96 (10), 101116.
[3] Soci, C.; Zhang, A. Xiang,; B. Dayeh,; S. A. Aplin,; D. P. R. Park,; J. Bao, X. Y.;
Lo, Y. H.; Wang, D., ZnO nanowire UV photodetectors with high internal gain. Nano Letters 2007, 7 (4), 1003-1009.
[4] Wei, A.; Pan, L.; Huang, W., Recent progress in the ZnO nanostructure-based sensors. Materials Science and Engineering: B 2011, 176 (18), 1409-1421.
[5] Goldberger, J.; Sirbuly, D. J.; Law, M.; Yang, P., ZnO nanowire transistors. The Journal of Physical Chemistry B 2005, 109 (4), 9-14.
[6] Wang, Z. L.; Song, J., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006, 312 (5771), 242-246.
[7] Hames, Y.; Alpaslan, Z.; Kösemen, A.; San, S. E.; Yerli, Y., Electrochemically grown ZnO nanorods for hybrid solar cell applications. Solar Energy 2010, 84 (3), 426-431.
[8] Ashrafi, A.; Jagadish, C., Review of zincblende ZnO: Stability of metastable ZnO phases. Journal of Applied Physics 2007, 102 (7), 071101.
[9] Wei, A.; Xu, C.X.; Sun, X.W.; Huang, W.; Lo, G.Q., Field emission from hydrothermally grown ZnO nanoinjectors. Journal of Display Technology. 2008, 4 (1), 9-12.
[10] Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Zuniga Perez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Che Mofor, A.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; Le Si Dang, D., Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20 (33), 332001.
[11] Willander, M.; Bano, N.; Nur, O., Inorganic-organic ZnO based heterostructures for lighting. ECS Transactions 2009, 19 (12), 1-12.
[12] Ahn, C. H.; Kim, Y. Y.; Kim, D. C.; Mohanta, S. K.; Cho, H. K., A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics 2009, 105 (1), 013502.
[13] Ismail, R.; Ahmadi, M. T.; Anwar, S., Top-Down Fabrication of ZnO NWFETs. Advanced Nanoelectronics; Nano and Energy (Book 4); CRC Press/ Taylor Francis Group: Boca Raton, 2012; 332-333.
[14] Drapak, I.T. Mechanism of excitation and infrared radiation of the ZnO-Cu2O Heterojunction. Soviet Physics Journal 1968, 19 (6), 719-722.
[15] Morkoç, H.; Özgür, Ü., Heterostructure Devices. Zinc Oxide: Fundamentals, Materials and Device Technology; Wiley-VCH Verlag GmbH Co. KGaA: Weinheim, Germany, 2009; 413.
[16] Guo, X.-L.; Choi, J.-H.; Tabata, H.; Kawai, T., Fabrication and optoelectronic properties of a transparent ZnO homostructural light- emitting diode. Japanese Journal of Applied Physics 2001, 40 (3A), 177-180.
[17] Ryu, Y. R.; Lee, T. S.; Leem, J. H.; White, H. W., Fabrication of homostructural ZnO p–n junctions and ohmic contacts to arsenic-doped p-type ZnO. Applied Physics Letters 2003, 83 (19), 4032.
[18] Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinuma, H.; Kawasaki, M., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials 2004, 4 (1), 42-46.
[19] Lim, J. H.; Kang, C. K.; Kim, K. K.; Park, I. K.; Hwang, D. K.; Park, S. J., UV Electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Advanced Materials 2006, 18 (20), 2720-2724.
[20] Minami, T.; Tanigava, M.; Yamanishi, M.; Kawamura, T., Observation of Ultraviolet-Luminescence from the ZnO MIS Diodes. Japanese Journal of Applied Physics 1974, 13 (9), 1475-1476.
[21] Alivov, Y. I.; Look, D. C.; Ataev, B. M.; Chukichev, M. V.; Mamedov, V. V.; Zinenko, V. I.; Agafonov, Y. A.; Pustovit, A. N., Fabrication of ZnO-based metal–insulator–semiconductor diodes by ion implantation. Solid-State Electronics 2004, 48 (12), 2343-2346.
[22] Hwang, D.-K.; Oh, M.-S.; Lim, J.-H.; Choi, Y.-S.; Park, S.-J., ZnO-based light-emitting metal-insulator-semiconductor diodes. Applied Physics Letters 2007, 91 (12), 121113.
[23] Shimizu, A.; Kanbara, M.; Hada, M.; Kasuga, M., ZnO green light emitting diode. Japanese Journal of Applied Physics 1978, 17 (8), 1435-1436.
[24] Chen, P.; Ma, X.; Yang, D., Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices. Applied Physics Letters 2006, 89 (11), 111112.
Chapter 2
[1] Moll, J.L., Variable capacitance with large capacity charge. Wescon Convention Record 1959, 32, 3.
[2] Pfann, W. G.; Garrett, C. G. B., Semiconductor varactors using surface space-charge layers. Proceedings of the Institute of Radio Engineers 1959, 47, 2011 -2012.
[3] Ivey, H.F., Electroluminescence and related effects; Advances in electronics and electron physics. Supplement; Academic Press, 1963.
[4] Müller, M.; Miao, G.-X.; Moodera, J. S., Exchange splitting and bias-dependent transport in EuO spin filter tunnel barriers. Europhysics Letters 2009, 88 (4), 47006.
[5] Bersch, E.; Bartynski, R. A., Energy level alignment in metal / oxide / semiconductor and organic dye/oxide systems. Ph.D. Dissertation, University of New Jersey, New Brunswick, 2008.
[6] Schenk, A.; Heiser, G., Modeling and simulation of tunneling through ultra-thin gate dielectrics. Journal of Applied Physics 1997, 81 (12), 7900.
[7] Fowler, R. H.; Nordheim, L., Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London 1928, 119(781), 173-181.
[8] Simmons, J. G., Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics 1963, 34 (6), 1793.
Chapter 3
[1] http://www.wisegeek.org/what-is-rf-sputtering.htm.
[2] Umar, A.; Kim, S. H.; Lee, Y. S.; Nahm, K. S.; Hahn, Y. B., Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties. Journal of Crystal Growth 2005, 282 (1-2), 131-136.
[3] Wu, X.C.; Song, W.H.; Huang, W.D.; Pu, M.H.; Zhao, B.; Sun, Y.P.; Du, J.J., Crystalline gallium oxide nanowires: intensive blue light emitters, Chemical Physics Letters 2000, 328(2), 5-9
[4] Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of semiconducting oxides. Science 2001, 291(5510), 1947
[5] Reeja-Jayan, B.; De la Rosa, E.; Sepulveda-Guzman, S.; Rodriguez, R. A.; Jose Yacaman, M., Structural characterization and luminescence of porous single crystalline ZnO nanodisks with sponge-like morphology. The Journal of Physical Chemistry C 2008, 112 (1), 240-246.
[6] Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E., Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics 1996, 79 (10), 7983.
[7] Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W., Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Advanced Functional Materials 2010, 20 (4), 561-572.
[8] Han, L.-L.; Cui, L.; Wang, W.-H.; Wang, J.-L.; Du, X.-W., On the origin of blue emission from ZnO quantum dots synthesized by a sol–gel route. Semiconductor Science and Technology 2012, 27 (6), 065020.
[9] Du, G. H.; Xu, F.; Yuan, Z. Y.; Van Tendeloo, G., Flowerlike ZnO nanocones and nanowires: Preparation, structure, and luminescence. Applied Physics Letters 2006, 88 (24), 243101.
[10] Zhang, D. H.; Xue, Z. Y.; Wang, Q. P., The mechanisms of blue emission from
ZnO films deposited on glass substrate by r.f. magnetron sputtering, Journal of Physics D: Applied Physics 2002, 35 (21), 2837.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54060-
dc.description.abstract本論文中,利用金屬-絕緣層-半導體(MIS)結構,改善傳統p-n同質接面二極體製作較困難的缺點,僅使用n型氧化鋅,使電子電洞對在絕緣層與氧化鋅界面復合發光,製作n型氧化鋅的發光元件;並利用透明電極與基板,使元件為雙面透光。本文包含三種MIS結構的氧化鋅發光元件,其一是以氧化鋅奈米柱與氧化鎂薄膜做出發光峰值波長在389奈米紫外波段元件,其二是利用旋塗氧化鋅奈米粒子與聚甲基丙烯酸甲酯(PMMA)做出發光波長涵蓋400奈米至750奈米以上的可見光元件,其三是利用單晶氧化鋅基板與極薄的二氧化矽薄膜做出發光峰值波長在375奈米紫外光波段的元件。而三種MIS元件中涉及之穿隧機制經由電流-電壓曲線加以探討。因此,這三種氧化鋅元件能夠藉由不同的材料與結構來得到紫外光或可見光波段的光,並且能夠有雙面透光之效果。zh_TW
dc.description.abstractIn this thesis, metal-insulator-semiconductor (MIS) structure is used to replace the common p-n junction structure LED in order to prevent the disadvantage of difficulties to fabricate p-type ZnO. N-type ZnO is only needed as the semiconductor for the devices. Electrons and holes recombine radiatively at the ZnO-insulator interface, thus the light emitting devices are obtained. Transparent electrodes and substrates are used to make the devices possess double-side emission. Three kinds of MIS light emitting devices are included in the thesis. One is a UV emission device with peak at 389 nm fabricated by ZnO nanorods and MgO film, another is a visible emission device ranges over 400nm to more than 750nm wavelength fabricated by ZnO nanoparticles and polymethylmethacrylate (PMMA), the other is also a UV emission device with peak at 375 nm fabricated by single-crystal ZnO and SiO2 film. In addition, the tunneling mechanism for three MIS devices are analyzed by current-voltage characteristics. We successfully demonstrate that all these three devices can emit UV or visible light with different materials and structures, and enable light emission from both sides of the devices.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:38:24Z (GMT). No. of bitstreams: 1
ntu-104-R02245007-1.pdf: 2249575 bytes, checksum: e2e4b452949c89bea8c04931a729ebe4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
Chapter 1 Introduction 1
1.1 Reference 4
Chapter 2 Theoretical Background 9
2.1 Electroluminescence of MIS structure 9
2.1.1 Introduction to MIS structure 9
2.1.2 The Energy Band Diagram of MIS Structure under Bias 11
2.1.3 Electroluminescence (EL) 14
2.1.4 Electroluminescence Mechanism of MIS device 14
2.2 References 19
Chapter 3 Experimental Details 21
3.1 Photoluminescence Measurement System 21
3.2 Current-Voltage (I-V) Measurement 22
3.3 Electroluminescence Measurement System 23
3.4 Scanning Electron Microscopy (SEM) 24
3.5 Direct Current (DC) sputtering 26
3.6 Radio-Frequency (RF) Sputtering 27
3.7 Thermal Evaporation 29
3.8 Material and Sample Preparation 31
3.8.1 Vapor- Solid (VS) Growth Mechanism and process of ZnO Nanorods…………………………………………………………..…31
3.8.2 ZnO nanoparticles 33
3.8.3 Device 1: ITO /ZnO nanorods / MgO / AZO 34
3.8.4 Device 2: ITO / PMMA / ZnO nanoparticles / ITO 36
3.8.5 Device 3: ITO / SiO2 / single-crystal ZnO 37
3.9 Reference 38
Chapter 4 Results and Discussion 40
4.1 Device 1: ITO / ZnO nanorods / MgO / AZO / sapphire 40
4.2 Device 2: ITO / PMMA / ZnO nanoparticles / ITO 42
4.3 Device 3: ITO / SiO2 / single-crystal ZnO 43
Chapter 5 Conclusion 52
dc.language.isoen
dc.title氧化鋅基金屬絕緣層半導體雙面發光元件之研究zh_TW
dc.titleZnO-based metal-insulator-semiconductor double-side light-emitting devicesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰源,許芳琪
dc.subject.keyword金氧半,氧化鋅,發光元件,電致發光,雙面透光,穿隧,zh_TW
dc.subject.keywordMIS,ZnO,LED,electroluminescence,double-side,tunneling,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2015-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved