請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54058
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪傳揚(Chwan-Yang Hong) | |
dc.contributor.author | Ke-Chun Lin | en |
dc.contributor.author | 林科均 | zh_TW |
dc.date.accessioned | 2021-06-16T02:38:19Z | - |
dc.date.available | 2020-10-12 | |
dc.date.copyright | 2015-10-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-24 | |
dc.identifier.citation | 第一部分: 戶刈義次 (1963) 作物學實驗法, 東京農業學會 Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 15: 63-78. Ariizumi T, Amagai M, Shibata D, Hatakeyama K, Watanabe M, Toriyama K. (2002) Comparative study of promoter activity of three anther-specific genes encoding lipid transfer transfer protein, xyloglucan endotransglucosylase/hydrolase and polygalacturonase in transgenic Arabidopsis thaliana. Plant Cell Rep. 21: 90-96. Blein JP, Coutos-Thevenot P, Marion D, Ponchet M. (2002) From elicitins to lipid-transfer proteins: a new insight in cell signaling involved in plant defence mechanisms. Trends Plant Sci. 7: 293–296. Boutrot F, Guirao A, Alary R, Joudrier P, Gautier MF. (2005) Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochim. Biophys. Acta. Gene Struct. Exp. 1730: 114-125. Boutrot F, Chantret N, Gautier MF. (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics. 9: 86-105. Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J. (2004) Xylem sap protein composition is conserved among different plant species. Planta. 219: 610-618. Burnett WV. (1997) Northern blotting of RNA denatured in glyoxal without buffer recirculation. Biotechniques. 22: 668-671. Cameron KD, Teece MA, Smart LB. (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183. Carvalho ADO, Gomes VM. (2007) Role of plant lipid transfer proteins in plant cell physiology: a concise review. Peptides. 28: 1144–1153. Castro MS, Gerhardt IR, Orr ugrave; S, Pucci P, Bloch Jr C. (2003) Purificat- ion and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds. J. Chromatogr. B. 794: 109-114. Chae K, Zhang K, Zhang L, Morikis D, Kim ST, Mollet JC, de la Rosa N, Tan K, Lord EM. (2007) Two SCA (stigma/style cysteine-rich adhesin) isoforms show structu -ral differences that correlate with their levels of in vitro pollen tube adhesion activity. J. Biol. Chem. 282: 33845-33858. Chae K, Kieslich CA, Morikis D, Kim SC, Lord EM. (2009) A gain of function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell. 21: 3902-3914. Chae K, Gonong BJ, Kim SC, Kieslich CA, Morikis D, Balasubramanian S, Lord EM. (2010) A multifaceted study of stigma/style cysteine-rich adhesion (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J. Exp. Bot. 61: 4277–4290. Choi AM, Lee SB, Cho SH, Hwang I, Hur GG, Suh MC. (2008) Isolation and characterization of multiple abundant lipid transfer protein isoforms in developing sesame (Sesamum indicum L.) seeds. Plant Physiol. Biochem. 46: 127-139. Coutos-Thevenot P, Jouenne T, Maes O, Guerbette F, Grosbois M, Le Caer P, Boulay M, Deloire A, Kader JC, Guern J. (1993) Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur. J. Biochem. 217: 885-889. DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R, Kunst L, Samuels L. (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell. 21: 1230-1238. Douliez JP, Michon T, Elmorjani K, Marion D. (2000) Mini review: Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 32: 1-20. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33: 751-63. Edstam MM, Viitanen L, Salminen Tam Edqvist J. (2011) Evolutionary history of the non-specific lipid transfer proteins. Mol. Plant. 4: 947-964. Edstam MM, Laurila M, H ouml;glund A, Raman A, Dahlstr ouml;m KM, Salminen TA, Edqvist J, Blomqvist K. (2014) Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol. Biochem. 75:55–69. Eklund DM, Edqvist J. (2003) Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. Plant Physiol. 132: 1249-12591. Evans DG. Miller MH. (1988) Vesicular-arbuscular mycorrhizas and the soil disturbance induced reduction of nutrient absorption in maize. New Phytol. 110: 67-74. Fey CD, Chancy RL, White MC. (1978) The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol Plant. Mol. Biol. 29: 511–566. Flowers TJ, Troke PF, Yeo AR. (1977) The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol Plant. Mol. Biol. 28: 89-121. Garcia-Garrido JM, Menossi M, Puigdomenech P, Martinez-Izquierdo JA, Delseny M. (1998) Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice. FEBS Lett. 428:193–199. Greenway H, Munns R. (1980) Mechnism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol Plant. Mol. Biol. 31: 149-190. Guiderdoni E, Cordero MJ, Vignols F, Garcia-Garrido JM, Lescot M, Tharreau D, Meynard D, Ferriere N, Notteqhem JL, Delseny M. (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Mol. Biol. 49: 683–699 Guo C, Ge X, Ma H. (2013) The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Mol. Biol. 82: 239-253. Hamilton JA. (2004) Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog. Lipid Res. 43: 177-199. Hincha DK. (2002) Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing. Phil. Trans. R. Soc. Lond. B. 357: 909-916. Hoh F, Pons JL, Gautier MF, de Lamotte F, Dumas C. (2005) Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding. Acta. Crystallogr. D. 61: 397-406. Imin N, Kerim T, Weinman JJ, Rolfe BG. (2006) Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol. Cell Proteomics. 5: 274-292. Jaradat AA, Shahid M. Al-Maskri A. (2004) Genetic diversity in the Batini barley landrace from Oman: I. Spike and seed quantitative and qualitative traits. Crop Sci. 44: 304-315. Jung HW, Kim KD, Hwang BK. (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environ -mental stresses. Planta. 221: 361-373. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. (2009) Priming in systemic plant immunity. Science. 324: 89–91. Kader JC (1996) Lipid-transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 627-654. Kader JC (1997) Lipid transfer proteins: a puzzling family of plant proteins. Trends Plant Sci. 2: 66-70. Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H. (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell. 18: 2733-2748. Kirubakaran SI, Begum SM, Ulaganathan K, Sakthivel N. (2008) Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol. Biochem. 46: 918-927. Klaus A. Heribert H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Physiol Plant. Mol. Biol. 55: 373-399. Lauga B, Charbonnel-Campaa L, Combes D. (2000) Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Sci. 157: 65-75. Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Lee DS, Park OK, Hwang I, Suh MC. (2009) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen, Alternaria brassicicola. Plant Physiol. 150: 42–54 Liu KH, Lin TY. (2003) Cloning and characterization of two novel lipid transfer protein I genes in Vigna radiata. DNA Seq. 14: 420-426. Liu F, Lu CM. (2013) An overview of non-specific lipid transfer protein in plant. Hereditas. 35: 307-314. Madrid SM (1991) The barley lipid transfer protein is targeted into the lumen of the endoplasmic reticulum. Plant Physiol. Biochem. 29: 659-703. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature. 419: 399–403. Misra N. Dwivedi UN. (2004) Genotypic difference in salinity tolerance of greengram cultivars. Plant Sci. 166: 1135-1142. Nieuwland J, Feron R, Huisman BA, Fasolino A, Hilbers CW, Derksen J, Mariani C. (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell. 17: 2009-2019. Munns R. Termaat A. (1986) Whole-plant responses to salinity. Plant Physiol. 13: 143-160. Munns R. (1993) Physiological process limiting plant growth in saline soils: some dogmas and hypothese. Plant Cell Environ. 16: 15-24. Panikashvili D, Shi JX, Bocobza S, Franke RB, Schreiber L, Aharoni A. (2010) The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproduct- ive organs and suberin in roots. Mol. Plant. 3: 563-575. Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM. (2000) A lipid transfer–like protein is necessary for lily pollen tube adhesion to an in vitro Stylar Matrix. Plant Cell. 12: 151–164. Passioura JB. (1991) Soil structure and plant-growth. Soil Res. 29: 717–728. Patkar RN, Chattoo BB. (2006) Transgenic indica rice expressing nsLTP like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol. Breed. 17: 159-171. Potocka I, Baldwin TC, Kurczynska EU. (2012) Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Rep. 31:2031- 2045. Pyee J, Yu H, Kolattukudy PE. (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch. Biochem. Biophys. 311: 460–468. Riederer M, Schreiber L. (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52: 2023-2032. Safi H, Saibi W, Alaoui MM, Hmyene A, Masmoudi K, Hanin M, Brini F. (2015) A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana, Plant Physiol. Biochem. 89:64–75. Salama S, Trivedi S, Busheva M, Arafa AA, Garaba G, Erdi L. (1994). Effect of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. Plant Physiol. 144: 241-247. Salcedo G, Sanchez-Monge R, Diaz-Perales A, Garcia-Casado G, Barber D. (2004) Plant non-specific lipid transfer proteins as food and pollen allergens. Clin. Exp. Allergy. 34: 1336-1341. Shinozaki K, Yamaguchi-Shinozaki K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, M eacute;traux JP, Nawrath C. (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell. 12: 721-737. Sossountzov L, Ruiz-Avial L, Vignols F, Jolliot A, Arondel V, Tchang F, Grosbois M, Guerbette F, Miginiac E, Delseny M, Puigdomenech P, Kader JC. (1991) Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3: 923-933. Sterk P, Booij H, Scheleekens GA, van Kammen A and de Vries SC. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3: 907-921. Tapia G, Morales-Quintana L, Parra C, Berbel A, Alcorta M. (2013) Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation. Plant Mol. Biol. 82: 485–501. Thoma S, Kaneto Y, Somerville CR. (1993) A nonspecific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 3: 427-436. Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville C. (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 105: 35–45. Tsuboi S, Osafune T, Tsugeki R, Nishimura M, Yamada M. (1992) Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. 111: 500–508. Vignols F, Wigger M, Garc iacute;a Garrido JM, Grellet F, Kader JC, Delseny M. (1997) Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene. 195:177–186. Wang C, Xie C, Chi F, Hu W, Mao G, Sun D, Li C, Sun Y (2008) BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant Cell Rep. 27:159–169. Wang P, Du Y, Zhao X, Miao Y, Song CP. (2013) The MPK6-ERF6-ROS-responsive cis-acting Element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiol. 161: 1392-1408. Wang F, Zang X, Kabir MR, Liu K, Liu Z, Ni Z, Yao Y, Hu Z, Sun Q, Peng HA. (2014) wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. Gene. 550:18–26. Whalley HJ, Sargeant AW, Steele JFC, Lacoere T, Lamb R, Saunders NJ, Knight H, Knight MR. (2011) Transcriptomic Analysis Reveals Calcium Regulation of Specific Promoter Motifs in Arabidopsis. Plant Cell 23: 4079-4095. Yamada M. (1992) Lipid transfer proteins in plants and microorganisms. Plant Cell Physiol. 33: 1-6. Yamamoto Y, Kobayashi Y, Devi SR, Rikishi S, Matsumoto H. (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 128: 63-72. Yeats TH, Rose JKC. (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci. 17:191–198. Yu K, Soares JM, Mandal MK, Wang C, Chanda B, Gifford AN, Fowler JS, Navarre D, Kachroo A, Kachroo P. (2013) A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaicacid-induced systemic immunity. Cell Rep. 3: 1266–1278. Zhang D, Liang W, Yin C, Zong J, Gu F. (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154:149–162 Zhu JK. (2001) Plant salt tolerance. Trends Plant Sci. 6: 66-71. 第二部分: 李誠斌。 (2004) 水稻OsLTP1基因的克隆、表達分析及功能鑑定。學位論文。南寧:廣西大學。 Ana MM, Peter D, Richard AD, Chris JL, Robin KC. (2002) A putative lipid transfer protein involved in systematic resistance signaling in Arabidopsis. Nature. 419: 399-403. Audenaert K, De Meyer GB, H ouml;fte MM. (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 128: 491-501. Batistic O, Kudla J. (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta. 219: 915-924. Bekreij C, Janse J, Vangoor BJ, Vandoesburg JDJ. (1992) The incidence of calcium oxalate crystals in fruit walls of tomato Lycopersicon esculentum Mill as affected by humidity, phosphate and calcium supply. Horicul. Sci. 67: 45-50. Block MA, Jouhet J. (2015) Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr. Opin. Cell Biol. 35: 21-29. Bray EA. (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ. 25: 153-161. Caffall KH, Mohnen D. (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohy. Res. 344: 1879-1900. Cheng SH, Willmann MR, Chen HC, Sheen J. (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129: 469-85. Christensen AH, Quail PH. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/ or screenable marker gene in monocotyledonous plants. Transgenic Res. 5: 213-218. Cowan AK, Turner SL, Botha CEJ. (1995) Effect of water stress and diclofop-methyl on photosynthesis, carotenoid and abscisic acid content of leaves of Avena byzantina and Avena fatua. South Afri. J. Bot. 61: 29–34. Du W, Wang Y, Liang S, Lu YT. (2004) Biochemical and expression analysis of an Arabidopsis calcium-dependent protein kinase- related kinase. Plant Sci. 168: 1181-1192. Fatemeh M, Eduviges GBF, Mahmood AK, Anita H, Gorji M, Margit L. (2009) Expression of calmodulin and lipid transfer protein genes in Prunus incise X serrula under difference stress conditions. Tree Physiol. 29: 437-444. Federico ML, Kaeppler HF, Skadsen RW. (2005) The complex developmental expression of a novel stress-responsive barley Ltp gene is determined by a shortened promoter sequence. Plant Mol Biol. 57: 35–51. Fediuc E, Lips SH, Erdei L. (2005) O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J. Plant Physiol. 162: 865-872. Finkelstein RR, Gibson SI. (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 5: 26-32. Harmon AC. (2003) Calcium-regulated protein kinases of plants. Gravit. Space Biol. Bull. 16: 83-90. Hiei Y, Ohta S, Komari T, Kumashiro T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271-282. Hirschi K. (2001) Vacuolar H+/Ca2+ transport: who’s directing the traffic? Trends in Plant Sci. 6: 100-104. Hobo T, Asada M, Kowyama Y, Hattori T. (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 19: 679-689. Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132: 666-680. Hu HC, Wang YY, Tsay YF. (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J. 57: 264-278. Hua W, Zhang L, Liang S, Jones RL, Lu YT. (2004) A tobacco calcium/ calmodulin binding protein kinase functions as a negative regulator of flowering. J. Biol.Chem. 279: 31483-31494. Imai R, Moses MS, Bray EA. (1995) Expression of an ABA-induced gene of tomato in transgenic tobacco during periods of water deficit. J. Exp. Bot. 46:1077-1084. Ishitani M, Xiong L, Stevenson B, Zhu JK. (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell. 9: 1935-1945. Jakab G, Ton J, Flors V, Zimmerli L, M eacute;traux JP, Mauch-Mani B. (2005) Enhanc- ing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139: 267-274. Jefferson RA, Kavanagh TA, Bevan MW. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marler in higher plants. EMBO J. 6: 3901-3907. Jung HW, Kim W, Hwang BK. (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are dif-ferentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ. 26: 915–928. Karssen CM, Brinkhorst-van der Swan DL, Breekland AE, Koornneef M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta. 157: 158-165. Kim KN, Lee JS, Han H, Choi SA, Go SJ, Yoon IS. (2003) Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol. Biol. 52: 1191-1202. Knight MR, Campbell AK, Smith SM, Trewavas AJ. (1991) Transgenic plants aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 352:524-526. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58. Lee TM, Lur HS, Chu C. (1993) Roles of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I: endogenous abscisic acid levels. Plant Cell Environ. 16: 481-490. Lee JA. (1999) The calcicole-calcifuge problem revisited. Adv. Bot. Res. 29: 1-30. Leung J, Giraudat J. (1998) Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 199-222. Li C, Xie W, Wang L, Zhao Y. (2011) The phosphorylation of lipid transfer protein CaMBP10. Protein Peptide Letters. 18: 17-22. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell. 14: 389-400. Luan S. (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 14: 37-42. Ludwig AA, Romeis T, Jones JD. (2004) CDPK-mediated signaling pathways: Specificity and cross-talk. J. Exp. Bot. 395: 181-188. Maghuly F, Borroto-Fernandez EG, Khan MA. (2009) Expression of calmodulin and lipid transfer protein genes in Prunus incisa × serrula under different stress conditions. Tree Physiol. 29: 437–444. Marschner H. (1995) Mineral nutrition of higher plants, 2nd edn. London: Academic Press. McLaughlin SB, Wimmer R. (1999) Calcium physiology and terrestrial ecosystem processes. New Phytol. 142: 373-417. Murillo I, Jaeck E, Cordero MJ, San Segundo B. (2001) Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol. Biol. 45: 145-158. Pandey GK. (2008) Emergence of a novel calcium signaling pathway in plants: CBL- CIPK signaling network. Physiol. Mol. Biol. Plants. 14: 51-68. Qiang X, Henry RL, Guikema JA, Paulsen GM. (1995) Association of high-temperature injury with increased sensitivity of photosynthesis to abscisic acid in wheat. Environ. Exp. Bot. 35: 441-454. Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK. (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol. Genet. Genom. 278: 493-505. Razem FA, El-Kereamy A, Abrams SR, Hill RD. (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature. 439: 290-294. Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J. (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J. Exp. Bot. 58: 211-219. Sagi M, Fluhr R. (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126: 1281-1290. Saijo Y, Hata S, Sheen J, Izui K. (1997) cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases. Biochim. Biophys. Acta. 1350: 109-114. Schlattner U, Tokarska-Schlattner M, Rousseau D, Boissan M, Mannella C, Epand R, Lacombe ML. (2014) Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipidtransfer proteins. Chem. Phys. Lipid. 179: 32-41. Shang KJ, Ling QL, Li CF, Cao YJ. (1991) A novel calmodulin binding protein in plants. Acta. Biochim. Biophys. Sin. 23: 416–422. Shear CB. (1975) Calcium-related disorders of fruits and vegetables. HoriScience. 10: 361-365. Shinozaki K, Yamaguchi-Shinozaki K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. Toki S. (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol. Biol. Rep. 15: 16-21. Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D. (2009) CIPK6, a CBL interacting protein kinase is required for development and salt tolerance in plant. Plant J. DOI, 10.1111/j.1365-313X.2009.03812. Wan B, Lin Y, Mou T. (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett. 581: 1179-1189. Wang Z, Wanqin X, Fang C, Cuifeng L. (2005) Identification of non-specific lipid transfer protein-1 as a calmodulin-binding protein in Arabidopsis. FEBS Lett. 579: 1683-1687. Wang C, Yang CP, Gao CQ, Wang YC. (2009) Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses. Tree Physiol. 29: 1607–1619. Watillon B, Kettmann R, Boxus P, Burny A. (1995) Structure of a calmodulin-binding protein kinase gene from apple. Plant Physiol. 108: 847-848. Wu GH, Robertson AJ, Liu XJ, Zheng P, Wilen RW, Nesbitt NT, Gusta LV. (2004) A lipid transfer protei is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). J Plant Physiol. 161: 449–458. Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y. (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.) J. Genet. Genom. 35: 531- 543. Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J. (2011) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J. Exp. Bot. 63: 1809-1822. Yoon GM, Cho HS, Ha HJ, Liu JR, Lee HS. (1999) Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39: 991-1001. Yubero-Serrano EM, Moyano E, Medina-Escobar N, Mu ntilde;oz-Blanco J, Caballero JL. (2003) Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot. 54: 1865–1877. Zeevaart JAD, Creelman RA. (1988) Metabolism and physiology of abscisic acid. Annu. Rev. Plant Biol. 39: 439-473. Zengin FK (2006) The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. J. Environ. Biol. 27: 441-448. Zhang L, Lu YT. (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci. 8: 123-127. Zhu JK, Hasegawa PM, Bressan RA. (1997) Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci. 16: 253-277. Zhu G, Ye N, Zhang J. (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol. 50: 644-651. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54058 | - |
dc.description.abstract | 第一部分:水稻是一個對鹽分相當敏感的物種,而鹽分逆境會對植物細胞的膜系造成傷害。植物的脂質運輸蛋白(Lipid transfer proteins, Ltps)是一群小分子蛋白質,普遍存在於各種植物中,具有運輸多種疏水性脂質分子之功能,在細胞膜系的修補與生合成、抵抗病蟲害與環境逆境等多種重要生理反應中扮演著重要角色。然而水稻的脂質運輸蛋白在非生物性逆境下所呈現的生理功能與分子特性仍然未知,因此本研究的目的為篩選並鑑定水稻中會受鹽分逆境誘導的Ltps,並進行分子特性分析。利用DNA微陣列法分析受鹽分逆境誘導表現的水稻LTPs基因,結果顯示有5個LTPs (OsLTPII.3、OsLTPII.5、OsLTPII.6、OsLTPV.1與OsLTPV.2) 及2個LTP-like (OsLtpL1、OsLtpL1) 基因顯著受到鹽分誘導表現。胺基酸序列比對及親緣關係分析發現這7個LTPs或LtpLs的胺基酸 N 端皆有訊息胜肽,典型的LTPs具有8個保守性半胱胺酸功能區塊,LtpLs則只有不完全的保守性半胱胺酸。分析水稻台農67號三葉齡幼苗在地上部與根部對各種非生物性逆境處理下的反應發現,除了鹽分外,這些基因亦受到缺水、低溫、H2O2、ABA與CaCl2等誘導表現。 進一步分析這些基因的啟動子區域顯示,受逆境誘導的基因多具有ABRE、MYB、MYC、ROSE與CRT/DRE等順式序列。組織專一性表現結果指出,受鹽分誘導且屬於LtpII次家族的成員(LtpII.3、LtpII.5 與LtpII.6)主要表現在花與種子;LtpIII.1則會大量累積在生殖生長期的莖部組織。分析跟DsRed螢光蛋白融合的LTP次細胞定位顯示這些基因皆表達在內質網上。以上結果可以作為未來在研究水稻脂質運輸蛋白生物性功能的新線索。 第二部分:從鹽分處理水稻Glutathione reductase 2-RNAi植株(gr2-RNAi)、Ascorbate peroxidase 8突變株(apx8)以及野生型(WT)水稻幼苗的microarray試驗中,發現OsLTP2基因只會在gr2-RNAi與apx8中受鹽分逆境的極大量誘導,但WT則不受鹽分影響。進一步以RT-PCR分析發現OsLTP2會在水稻幼苗中受到ABA與鈣離子的誘導,並專一性地表現在水稻的胚與花藥。選殖OsLTP2啟動子並分別以GUS、YFP作為報導基因轉殖到水稻中,結果顯示1 kb啟動子可賦予YFP表現出與RNA相似的表達趨勢。GUS及YFP均表現在種子的胚與花藥,外加ABA與氯化鈣處理會大量誘導GUS累積。以玉米Ubi 1啟動子驅動OsLTP2基因大量表現轉殖株相較於野生型水稻,對高溫、低溫表現出過敏感外表型,但外加ABA不影響其生長。反之以OsLTP2-RNAi抑制LTP2表現之轉殖株則有株高變矮的外表型,與WT比較,降低約24%的株高。RT-PCR分析轉殖株顯示OsNCED3以及OsNCED5基因在OsLTP2-RNAi植株中受到誘導,但不出現在WT與大量表現的LTP2植株中。同時apx8與gr2-RNAi在鹽分處理後,OsNCED3基因表現量也高於WT。這些結果說明了OsLTP2基因只會在突變株受鹽分逆境大量誘導的原因可能跟apx8與gr2-RNAi對鹽分較敏感,累積較多的ABA進而誘使OsLTP2基因表現。綜合以上結果說明了OsLTP2基因參與水稻ABA所調控的生理功能,其更確切的功能與在水稻所扮演的角色有待未來更進一步的研究。 | zh_TW |
dc.description.abstract | Part 1. Rice is sensitive to salt. Salt stress can cause injury to plant cellular membrane. Plant lipid transfer proteins (LTPs) are abundant lipid binding proteins that are important in membrane vesicle biogenesis and trafficking; however, the biological importance of Ltps on salt-stress response in rice remains unclear. Therefore, salt-responsive rice Ltps were identified and characterized in this study. Microarray analysis showed seven genes positively regulated by salinity, including five Ltp genes (LtpII.3, LtpII.5, LtpII.6, LtpV.1, and LtpV.2) and two Ltp-like (LtpL; LtpL1 and LtpL2) genes. Amino acid alignment revealed that all these Ltp and LtpL genes contained the N-terminal signal peptides. In addition to LtpL1, all salt-inducible Ltp genes have the conserved eight cysteine residue motifs backbone. Verification of gene expression to different stimuli in rice seedlings revealed that salt-regulated Ltp genes differentially responded to drought, cold, H2O2, abscisic acid (ABA) and CaCl2; furthermore, the expression of Ltp and LtpL genes was tissue-specifically regulated by ABA-dependent and independent pathways. In silico analysis of an 1.5-Kb 5’-upstream region of these genes identified regulatory cis-elements associated with ABA, calcium and cold/drought responses. Three LtpII subfamily genes, including LtpII.3, LtpII.5 and LtpII.6, were strictly expressed in flowers and seeds, and LtpIII.1 mRNA strongly accumulated in stem tissue. Subcellular localization analysis of LTP-DeRed fusion proteins revealed that the five LTPs and two LTPLs localized at the endoplasmic reticulum. The results provide new clues to further understand the biological functions of Ltp genes.
Part 2. According to our previous microarray experiments, we put seedlings of Glutathione reductase 2 – RNAi transgenic rice (gr2-RNAi), Ascorbate peroxidase 8 rice mutant (apx8), and wild type rice (WT) under salt treatment, discovering that OsLTP2 gene was only markedly induced in gr2-RNAi and apx8 but not WT rice. RT-PCR results showed that OsLTP2 gene could be induced by ABA and calcium ion in shoot of seedlings; furthermore, specifically expressed in embryo and anther. Cloning promoter of OsLTP2 gene and fused with GUS and YFP, which acted as reporter genes, then transformed into rice calli by agrobacterium, we found that 1.0 kb-length OsLTP2 promoter could make YFP express as similar way as intrinsic OsLTP2 gene expression. Both GUS and YFP expressed in embryo and anther; in addition, external stumili like ABA and calcium ion could aslo highly induce expression of GUS accumulation. The phenotype of over-expressed OsLTP2 gene transgenic rice, which was driven by constitutive promoter Ubi 1 from maize, under high and low temperature displayed over-sensitived phenotype; however, not affected by ABA treatment. On the contrary, plant height of OsLTP2-RNAi lines were severely inhibited about 24% compared to WT in reproductive stage. RT-PCR analysis showed that expression of OsNCED3 and OsNCED5 gene in OsLTP2-RNAi were higher than WT and OE-OsLTP2. Similarly, expression level of OsNCED3 in gr2-RNAi and apx8 was higher than WT under salt treatment. These results reveled possible reasons which made OsLTP2 gene only extremely expressed in gr2-RNAi and apx8 may due to over-accumulated ABA in plants. Therefore, OsLTP2 gene plays an important role in plant development and ABA-related regulation. The in-depth function of OsLTP2 gene need to be studied in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:38:19Z (GMT). No. of bitstreams: 1 ntu-104-R02623002-1.pdf: 3784867 bytes, checksum: 4de955100d73f9ebb3dddf0a55e71b10 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目 錄 目錄…….………………………….……………………………………………………..I 圖目錄..………………………………………….………………………………………II 表目錄……….………………………………………………….………………………III 縮寫字對照表…………………………………………………………………….……IV 第一部分 題目:受鹽分誘導表現水稻非專一性脂質運輸蛋白基因的分子特性分析……......1 中文摘要……………………………………………………………………………...…2 英文摘要………………………………………………………………………………...3 壹、 前人文獻回顧………………………………………………………….…………..4 貳、 研究目的……………………………………………………………………….…..8 參、 材料方法……………………………………………………………….………..…9 肆、 結果…………………………………………………………………………….…21 伍、 討論……………………………………………………………….………………24 陸、 參考文獻………………………………………………………………….………27 第二部分 題目:受鈣離子與離層酸誘導的水稻非專一性脂質運輸蛋白基因OsLTP2之分子特性與功能性分析………………………...…………………………………..42 中文摘要…………………………………………………..…………………………...43 英文摘要…………………………………………………………..…………………...44 壹、 前人文獻回顧………………………………………………………….…………45 貳、 研究目的……………………………………………………………………….…50 參、 材料方法……………………………………………………………….…………51 肆、 結果…………………………………………………………………………….…56 伍、 討論………………………………………………………………….……………59 陸、 參考文獻…………………………………………………………………….……63 圖目錄 第一部分:受鹽分誘導表現水稻非專一性脂質運輸蛋白基因的分子特性分析 圖1. 水稻非專一性脂質運輸蛋白LTP與LtpL基因之親緣關係分析圖……….......34 圖2. 水稻受鹽分逆境誘導的LTP與LtpL基因之胺基酸序列比對圖。….………....35 圖3. 受鹽分逆境誘導的Ltp與LtpL基因在不同處裡下的表現情況。...…………....36 圖4. 受鹽分逆境誘導的Ltp與LtpL基因其啟動子區域之in silico預測分析。.…....37 圖5. 受鹽分逆境誘導的Ltp與LtpL基因之組織專一性分析。………………...…....38 圖6. 受鹽分逆境誘導的Ltp與LtpL基因之次細胞定位分析。…...………………....39 第二部分:受鈣離子與離層酸誘導的水稻非專一性脂質運輸蛋白基因OsLTP2之分子特性與功能性分析 圖1. 微陣列分析TNG67、apx8與gr2-RNAi於鹽處理6 hr後之基因表現變化。…..69 圖2. 水稻OsLTP2基因之非生物性逆境誘導性與組織專一性分析。……...……....70 圖3. 使用於本研究中基因轉殖實驗之質體構築。……………………………..…... 71 圖4. 穩定性轉殖水稻P(1.0k)-OsLTP2-GUS之GUS染色組織專一性分析。……....72 圖5. 轉殖水稻P(0.5k) , (1.0k)-OsLTP2-GUS的calli受逆境處理之GUS誘導性分析。..73 圖6. 轉殖水稻P(1.0k)-OsLTP2-GUS於ABA與氯化鈣處理之GUS染色分析。…....74 圖7. 穩定性轉殖水稻P(1.0k)-OsLTP2-YFP之組織專一性螢光分析。………….........75 圖8. OsLTP2基因之次細胞定位分析。………………………………………….…....76 圖9. 大量表現OsLTP2基因與RNAi功能弱化之穩定性轉殖水稻的分子檢測。.....77 圖10. TNG67、OE-OsLTP2與OsLTP2-RNAi轉殖株之農藝性狀分析。……….……78 圖11. 大量表現OsLTP2基因之轉殖株於非生物性逆境處理下的功能分析。…….79 圖12. TNG67與轉殖株之ABA生合成、反應相關基因之RT-PCR分析。…………..80 圖13. OsLTP2之潛在功能預測模型。………………………………………...……....81 表目錄 第一部分:受鹽分誘導表現水稻非專一性脂質運輸蛋白基因的分子特性分析 表1. 微陣列分析TNG67、apx8與gr2-RNAi於鹽處理6 hr後之基因表現變化。......40 表2. 本研究中Ltp與LtpL基因命名方式之前人文獻與Locus_ID。…………..…....41 附表1. 本實驗中用於RT-PCR、次細胞定位與質體構築之引子列表。……..……....82 附表2. 水稻基因轉殖用培養基列表。………………………………………..……....83 附表3. 木村氏水耕液配方。…………………………………………………..……....85 | |
dc.language.iso | zh-TW | |
dc.title | 水稻非專一性脂質運輸蛋白基因對非生物性逆境的反應及OsLTP2的功能分析 | zh_TW |
dc.title | Response of rice non-specific lipid transfer protein genes to abiotic stress and functional analysis of OsLTP2 | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賀端華(Tuan-Hua David Ho),葉國楨(Kuo-Chen Yeh),張孟基(Men-Chi Chang),蔡育彰(Yu-Chang Tsai) | |
dc.subject.keyword | 第一部分:水稻,nsLTPs,LtpLs,鹽分逆境,第二部分:水稻,OsLTP2,ABA,鹽分逆境, | zh_TW |
dc.subject.keyword | Part 1. Lipid transfer proteins,LTP-like proteins,Rice,Salinity,Abiotic stress Part 2. OsLTP2,Rice,Salinity,Abiotic stress,ABA, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-24 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。