Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54050
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋(LU-PING CHOW)
dc.contributor.authorYen-Tzu Changen
dc.contributor.author張晏慈zh_TW
dc.date.accessioned2021-06-16T02:38:00Z-
dc.date.available2025-08-13
dc.date.copyright2020-09-04
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation1. Rawla, P., T. Sunkara, and V. Gaduputi, Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol, 2019. 10(1): p. 10-27.
2. Rahib, L., et al., Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res, 2014. 74(11): p. 2913-21.
3. Koutsounas, I., et al., Current evidence for histone deacetylase inhibitors in pancreatic cancer. World J Gastroenterol, 2013. 19(6): p. 813-28.
4. Hidalgo, M., et al., Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology, 2015. 15(1): p. 8-18.
5. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
6. Maisonneuve, P. and A.B. Lowenfels, Epidemiology of pancreatic cancer: an update. Dig Dis, 2010. 28(4-5): p. 645-56.
7. Vrieling, A., et al., Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer, 2010. 126(10): p. 2394-403.
8. Iodice, S., et al., Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg, 2008. 393(4): p. 535-45.
9. Li, D., et al., Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA, 2009. 301(24): p. 2553-62.
10. Calle, E.E., et al., Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med, 2003. 348(17): p. 1625-38.
11. Hall, M.J., J.J. Dignam, and O.I. Olopade, Family history of pancreatic cancer in a high-risk cancer clinic: implications for risk assessment. J Genet Couns, 2008. 17(4): p. 365-72.
12. Shi, C., R.H. Hruban, and A.P. Klein, Familial pancreatic cancer. Arch Pathol Lab Med, 2009. 133(3): p. 365-74.
13. Klein, A.P., et al., Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res, 2004. 64(7): p. 2634-8.
14. De La Cruz, M.S., A.P. Young, and M.T. Ruffin, Diagnosis and management of pancreatic cancer. Am Fam Physician, 2014. 89(8): p. 626-32.
15. Mohammed, S., G. Van Buren, 2nd, and W.E. Fisher, Pancreatic cancer: advances in treatment. World J Gastroenterol, 2014. 20(28): p. 9354-60.
16. Ducreux, M., et al., Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2015. 26 Suppl 5: p. v56-68.
17. Pannala, R., et al., New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol, 2009. 10(1): p. 88-95.
18. Chari, S.T., et al., Beta-cell function and insulin resistance evaluated by HOMA in pancreatic cancer subjects with varying degrees of glucose intolerance. Pancreatology, 2005. 5(2-3): p. 229-33.
19. Aggarwal, G., P. Kamada, and S.T. Chari, Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas, 2013. 42(2): p. 198-201.
20. Karnevi, E., et al., Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer, 2013. 13: p. 235.
21. Pannala, R., et al., Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology, 2008. 134(4): p. 981-7.
22. Basso, D., et al., Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut, 2004. 53(8): p. 1159-66.
23. Basso, D., et al., The pancreatic cancer cell line MIA PaCa2 produces one or more factors able to induce hyperglycemia in SCID mice. Anticancer Res, 1995. 15(6B): p. 2585-8.
24. Basso, D., et al., Putative pancreatic cancer-associated diabetogenic factor: 2030 MW peptide. Pancreas, 2002. 24(1): p. 8-14.
25. Wang, F., et al., In vitro influences between pancreatic adenocarcinoma cells and pancreatic islets. J Surg Res, 1998. 79(1): p. 13-9.
26. Sharma, A., et al., Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology, 2018. 155(3): p. 730-739 e3.
27. Donath, M.Y., Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov, 2014. 13(6): p. 465-76.
28. Ellingsgaard, H., et al., Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A, 2008. 105(35): p. 13163-8.
29. He, W., et al., TLR4 triggered complex inflammation in human pancreatic islets. Biochim Biophys Acta Mol Basis Dis, 2019. 1865(1): p. 86-97.
30. Li, J., et al., TLR4 is required for the obesity-induced pancreatic beta cell dysfunction. Acta Biochim Biophys Sin (Shanghai), 2013. 45(12): p. 1030-8.
31. Gao, W., et al., Analysis of global gene expression profiles suggests a role of acute inflammation in type 3C diabetes mellitus caused by pancreatic ductal adenocarcinoma. Diabetologia, 2015. 58(4): p. 835-44.
32. Liao, W.C., et al., Galectin-3 and S100A9: Novel Diabetogenic Factors Mediating Pancreatic Cancer-Associated Diabetes. Diabetes Care, 2019. 42(9): p. 1752-1759.
33. Sakahara, H., et al., Serum CA 19-9 concentrations and computed tomography findings in patients with pancreatic carcinoma. Cancer, 1986. 57(7): p. 1324-6.
34. Kim, J.E., et al., Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol, 2004. 19(2): p. 182-6.
35. Kamili, N.A., et al., Key regulators of galectin-glycan interactions. Proteomics, 2016. 16(24): p. 3111-3125.
36. Farhad, M., A.S. Rolig, and W.L. Redmond, The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology, 2018. 7(6): p. e1434467.
37. Massa, S.M., et al., L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry, 1993. 32(1): p. 260-7.
38. Bambouskova, M., et al., New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling. Mol Cell Biol, 2016. 36(9): p. 1366-82.
39. Haudek, K.C., et al., Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta, 2010. 1800(2): p. 181-9.
40. Yang, R.Y., D.K. Hsu, and F.T. Liu, Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A, 1996. 93(13): p. 6737-42.
41. Akahani, S., et al., Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res, 1997. 57(23): p. 5272-6.
42. Hanada, M., et al., Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem, 1995. 270(20): p. 11962-9.
43. Bassen, R., et al., [Vertebrate galectins: structure and function, role in tumoral process]. Bull Cancer, 2000. 87(10): p. 703-7.
44. Markowska, A.I., K.C. Jefferies, and N. Panjwani, Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem, 2011. 286(34): p. 29913-21.
45. Dumic, J., S. Dabelic, and M. Flogel, Galectin-3: an open-ended story. Biochim Biophys Acta, 2006. 1760(4): p. 616-35.
46. Burguillos, M.A., et al., Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell Rep, 2015. 10(9): p. 1626-1638.
47. Fukumori, T., et al., CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res, 2003. 63(23): p. 8302-11.
48. Xue, H., et al., The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget, 2017. 8(30): p. 49824-49838.
49. Suzuki, Y., et al., Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim Biophys Acta, 2008. 1783(5): p. 924-34.
50. Yilmaz, H., et al., Increased levels of galectin-3 were associated with prediabetes and diabetes: new risk factor? J Endocrinol Invest, 2015. 38(5): p. 527-33.
51. Seferovic, J.P., et al., Structural myocardial alterations in diabetes and hypertension: the role of galectin-3. Clin Chem Lab Med, 2014. 52(10): p. 1499-505.
52. Li, P., et al., Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 2016. 167(4): p. 973-984 e12.
53. Petrovic, I., et al., Overexpression of Galectin 3 in Pancreatic beta Cells Amplifies beta-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne), 2020. 11: p. 30.
54. Heavner, M.E., W.G. Qiu, and H.P. Cheng, Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales. PLoS One, 2015. 10(8): p. e0135655.
55. Avruch, J., MAP kinase pathways: the first twenty years. Biochim Biophys Acta, 2007. 1773(8): p. 1150-60.
56. Taniguchi, C.M., B. Emanuelli, and C.R. Kahn, Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol, 2006. 7(2): p. 85-96.
57. Khan, A.H. and J.E. Pessin, Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia, 2002. 45(11): p. 1475-83.
58. Klip, A., et al., Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol, 2014. 306(10): p. C879-86.
59. Boucher, J., A. Kleinridders, and C.R. Kahn, Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol, 2014. 6(1).
60. Morino, K., K.F. Petersen, and G.I. Shulman, Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes, 2006. 55 Suppl 2: p. S9-S15.
61. Kim, J.J. and D.D. Sears, TLR4 and Insulin Resistance. Gastroenterol Res Pract, 2010. 2010.
62. Saisho, Y., beta-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J Diabetes, 2015. 6(1): p. 109-24.
63. Ding, M., et al., Liraglutide prevents beta-cell apoptosis via inactivation of NOX2 and its related signaling pathway. J Diabetes Complications, 2019. 33(4): p. 267-277.
64. Lee, S.M., et al., Involvement of the TLR4 (Toll-like receptor4) signaling pathway in palmitate-induced INS-1 beta cell death. Mol Cell Biochem, 2011. 354(1-2): p. 207-17.
65. Wang, X., et al., Inhibition of TLR4 protects rat islets against lipopolysaccharide-induced dysfunction. Mol Med Rep, 2017. 15(2): p. 805-812.
66. Vetere, A., et al., Targeting the pancreatic beta-cell to treat diabetes. Nat Rev Drug Discov, 2014. 13(4): p. 278-89.
67. Garay-Malpartida, H.M., et al., Toll-like receptor 4 (TLR4) expression in human and murine pancreatic beta-cells affects cell viability and insulin homeostasis. BMC Immunol, 2011. 12: p. 18.
68. Arkan, M.C., et al., IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med, 2005. 11(2): p. 191-8.
69. Hirosumi, J., et al., A central role for JNK in obesity and insulin resistance. Nature, 2002. 420(6913): p. 333-6.
70. Reyna, S.M., et al., Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes, 2008. 57(10): p. 2595-602.
71. Lee, Y.H., et al., c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem, 2003. 278(5): p. 2896-902.
72. Correction: Pancreatic Cancer-Derived Exosomes Causes Paraneoplastic beta-cell Dysfunction. Clin Cancer Res, 2015. 21(19): p. 4495.
73. Demotte, N., et al., Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity, 2008. 28(3): p. 414-24.
74. Zhuang, S. and R.G. Schnellmann, A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther, 2006. 319(3): p. 991-7.
75. Cagnol, S. and J.C. Chambard, ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J, 2010. 277(1): p. 2-21.
76. Tan, B.J. and G.N. Chiu, Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis. Int J Oncol, 2013. 42(5): p. 1605-12.
77. Kim, Y.K., et al., Role of ERK activation in cisplatin-induced apoptosis in OK renal epithelial cells. J Appl Toxicol, 2005. 25(5): p. 374-82.
78. Kale, J., et al., Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Rep, 2018. 19(9).
79. Gardai, S.J., et al., Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem, 2004. 279(20): p. 21085-95.
80. Tamura, Y., S. Simizu, and H. Osada, The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Lett, 2004. 569(1-3): p. 249-55.
81. Tsai, S.C., et al., ERK-modulated intrinsic signaling and G(2)/M phase arrest contribute to the induction of apoptotic death by allyl isothiocyanate in MDA-MB-468 human breast adenocarcinoma cells. Int J Oncol, 2012. 41(6): p. 2065-72.
82. Gantke, T., et al., IkappaB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev, 2012. 246(1): p. 168-82.
83. Beinke, S., et al., NF-kappaB1 p105 negatively regulates TPL-2 MEK kinase activity. Mol Cell Biol, 2003. 23(14): p. 4739-52.
84. Lang, V., et al., ABIN-2 forms a ternary complex with TPL-2 and NF-kappa B1 p105 and is essential for TPL-2 protein stability. Mol Cell Biol, 2004. 24(12): p. 5235-48.
85. Roget, K., et al., IkappaB kinase 2 regulates TPL-2 activation of extracellular signal-regulated kinases 1 and 2 by direct phosphorylation of TPL-2 serine 400. Mol Cell Biol, 2012. 32(22): p. 4684-90.
86. Amyot, J., et al., Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-kappaB signalling. PLoS One, 2012. 7(4): p. e36200.
87. Yin, J., et al., Toll-like receptor 2/4 links to free fatty acid-induced inflammation and beta-cell dysfunction. J Leukoc Biol, 2014. 95(1): p. 47-52.
88. Cucak, H., et al., Macrophage contact dependent and independent TLR4 mechanisms induce beta-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PLoS One, 2014. 9(3): p. e90685.
89. Califice, S., V. Castronovo, and F. Van Den Brule, Galectin-3 and cancer (Review). Int J Oncol, 2004. 25(4): p. 983-92.
90. Yao, Y., et al., HH1-1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway. Carbohydr Polym, 2019. 204: p. 111-123.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54050-
dc.description.abstract胰臟癌由於缺乏明顯病徵,導致85 %的病人在確診時已為晚期,且根據報導有將近40 %的胰臟癌病患伴隨著新生糖尿病的症狀。而這些新生糖尿病(PCDM)被認為是胰臟癌釋放的致糖尿病因子所導致,因此鑑定出這些致糖尿病因子可以作為區分第二型糖尿病與PCDM的生物標記,並提供胰臟癌早期診斷的新方向。
根據實驗室先前發表的paper,galectin-3被認為是PCDM的致糖尿病因子。且利用ELISA分析病人血清中的galectin-3濃度,發現galectin-3可以作為有效的區分第二型糖尿病以及PCDM病人的潛力biomarker。
為了更進一步釐清galectin-3在PCDM中扮演的角色,實驗室利用nickel column 純化出重組蛋白galectin-3進行細胞實驗,結果顯示在胰島素刺激下galectin-3可以抑制肌肉細胞的葡萄糖攝取,且是透過活化IRS-1的抑制型磷酸化位點ser 307及降低AKT的磷酸化來抑制胰島素訊息傳遞路徑。而TLR4已被報導與胰島素抗性有關,且下游的IKK會活化IRS-1 ser307以抑制胰島素訊息傳遞路徑。實驗結果顯示,galectin-3抑制的胰島素訊息傳遞路徑在TLR4及IKK抑制劑分別處理下都有回升的情形,代表galectin-3會透過活化TLR4/ IKK路徑來抑制胰島素訊息傳遞路徑,來促進C2C12細胞的胰島素抗性。
另一方面,實驗室前人發現胰臟癌細胞株的條件培養基以及galectin-3都可以使胰島β細胞INS-1存活率下降,進一步探討其中機制發現,galectin-3處理下IKK及ERK的磷酸化會增加、apoptotic marker BAX/Bcl-2 ratio及cleavage caspase-3都有上升。除此之外,在TLR4及IKK抑制劑分別處理下,pERK、BAX/Bcl-2 ratio及cleavage caspase-3表現量都有回升的情形,說明了galectin-3會透過活化TLR4/IKK路徑來促進ERK誘導的細胞凋亡。
綜上所述,本篇論文了解到galectin-3可以作為PCDM的潛力生物標記,並且在機制上,會活化TLR4/IKK進而抑制胰島素訊息傳遞路徑來造成肌肉細胞C2C12的胰島素抗性;在胰島β細胞INS-1方面則是透過活化TLR4/IKK/ERK路徑來誘導細胞凋亡。
zh_TW
dc.description.abstractWithout evident cancer-specific symptom, 85% pancreatic cancer patients are diagnosed at advanced stage. It is reported that nearly 40% patients are followed with pancreatic cancer-associated new-onset diabetes mellitus (PCDM). PCDM are mediated by some unknown tumor-secreted diabetogenic factors. Therefore, identifying these diabetogenic factors could help us find new biomarker for distinguishing PCDM from type 2 diabetes, and provide a new approach to early detection for pancreatic cancer.
In our previous study, galectin-3 played a diabetogenic role in PCDM. Also, galectin-3 was identified as the biomarker for distinguishing the PCDM from T2DM patients by analyzing the patients’ serum sample.
To further understand the role of galectin-3 in PCDM, recombinant galectin-3 protein was purified. Our result showed that galectin-3 could inhibit glucose uptake in C2C12 cell upon insulin stimulation. In mechanism, they could inhibit insulin signaling pathway by upregulating the inhibitory phosphorylation of IRS-1 and downregulating the phosphorylation of AKT. Next, the IRS-1 activity and AKT phosphorylation was partially rescued upon TLR4 and IKK inhibitor treatment, respectively. It suggested that galectin-3 inhibited insulin signaling pathway through TLR4/IKK pathway, which induce insulin resistance in C2C12 cell.
In addition, the role of galectin-3 in β cell was also investigated. We found that the conditioned medium of pancreatic cancer cell line and galectin-3 could inhibit INS-1 cell viability. Data showed that galectin-3 triggered IKK and ERK phosphorylation and induced BAX/Bcl-2 ratio upregulation and caspase 3 activity. Furthermore, galectin-3 induced-ERK phosphorylation, BAX/Bcl-2 and caspase-3 activation was rescued by TLR4 and IKK inhibitor treatment, respectively. It showed that galectin-3 induced ERK/caspase-3 activation through TLR4/IKK pathway, which caused INS-1 cell apoptosis.
Until now, these data have showed that galectin-3 is a diabetogenic factor in PCDM. It promoted insulin resistance through TLR4/IKK pathway to inhibit insulin signaling in C2C12 cell, and induced INS-1 cell apoptosis through TLR4/IKK/ERK pathway to upregulate the expression of BAX/Bcl-2 and caspase 3.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:38:00Z (GMT). No. of bitstreams: 1
U0001-0408202010310400.pdf: 2964597 bytes, checksum: b45b9e5168e4677b50e5cdae8da7d88d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口委審定書 I
謝誌 II
中文摘要 III
abstract V
縮寫 VII
目錄 2
圖目錄 3
附錄目錄 5
第一章 導論 6
第一節 胰臟癌 6
第二節 胰臟癌誘發的新生糖尿病(PCDM) 9
第三節 生物標記 12
第四節galectin-3的介紹 13
第五節 胰島素抗性及胰島素分泌之調控 15
第六節 研究動機 18
第二章 實驗材料 19
第一節 細胞株 19
第二節 血清樣本 19
第三節 抗體 19
第四節 藥品 20
第五節 試劑組 22
第六節 儀器 22
第三章 實驗方法 24
第一節 細胞培養 24
第二節 候選蛋白製備 25
第三節 蛋白質分析 26
第四節 臨床血清檢體分析 30
第四章 研究結果 33
第一節galectin-3在PCDM中的角色 33
第二節 galectin-3在肌肉細胞c2C12細胞中扮演的角色 33
第三節 galectin-3在胰島β細胞INS-1中扮演的角色 34
第五章 討論 36
1. galectin-3在PCDM中扮演的角色 36
2. 探討galectin-3在調控肌肉細胞胰島素抗性中扮演的角色 36
3 探討galectin-3在胰島細胞中扮演的角色 37
4.未來展望 40
六、參考文獻 41
表 50
圖 52
附錄 62
dc.language.isozh-TW
dc.subject胰臟癌誘發之新生糖尿病zh_TW
dc.subject胰島β細胞zh_TW
dc.subject生物標記zh_TW
dc.subject半乳糖凝集素-3zh_TW
dc.subject細胞凋亡zh_TW
dc.subject胰島素阻抗zh_TW
dc.subject胰臟癌誘發之新生糖尿病zh_TW
dc.subject胰島β細胞zh_TW
dc.subject生物標記zh_TW
dc.subject半乳糖凝集素-3zh_TW
dc.subject細胞凋亡zh_TW
dc.subject胰島素阻抗zh_TW
dc.subjectβ cellen
dc.subjectinsulin resistanceen
dc.subjectPCDMen
dc.subjectbiomarkeren
dc.subjectcell apoptosisen
dc.subjectgalectin-3en
dc.subjectbiomarkeren
dc.subjectβ cellen
dc.subjectPCDMen
dc.subjectinsulin resistanceen
dc.subjectcell apoptosisen
dc.subjectgalectin-3en
dc.title探討致糖尿病因子 Galectin-3 調控胰臟癌誘發新生糖尿病的機制
zh_TW
dc.titleTo investigate the mechanisms of galectin-3-mediated insulin resistance in pancreatic cancer-associated new-onset diabetes (PCDM).en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳明賢(MING-SHIANG WU),廖偉智(WEI-CHIH LIAO),徐立中(Li-Chung Hsu),龔秀妮(HSIU-NI KUNG)
dc.subject.keyword胰臟癌誘發之新生糖尿病,胰島素阻抗,細胞凋亡,半乳糖凝集素-3,生物標記,胰島β細胞,zh_TW
dc.subject.keywordPCDM,insulin resistance,cell apoptosis,galectin-3,biomarker,β cell,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202002343
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-0408202010310400.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved