請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54026完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李銘仁 | |
| dc.contributor.author | Ya-Yun Hsiao | en |
| dc.contributor.author | 蕭亞筠 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:37:03Z | - |
| dc.date.available | 2017-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-25 | |
| dc.identifier.citation | 1. Friedman, J. and V.M. Riccardi, Clinical and epidemiological features. Neurofibromatosis: phenotype, natural history, and pathogenesis, 1999: p. 29-86.
2. Upadhyaya, M. and D.N. Cooper, Neurofibromatosis type 1: from genotype to phenotype. 1998: Garland Science [Imprint]. 3. Huson, S.M. and R.A.C. Hughes, The neurofibromatoses: a pathogenetic and clinical overview. 1994: Chapman & Hall Medical. 4. Lee, M.J. and D.A. Stephenson, Recent developments in neurofibromatosis type 1. Curr Opin Neurol, 2007. 20(2): p. 135-41. 5. Suzuki, H., K. Takahashi, and S. Shibahara, [Molecular genetics of neurofibromatosis type 1]. Nihon Rinsho, 1993. 51(9): p. 2457-61. 6. Viskochil, D., Neurofibromatosis 1. American journal of medical genetics, 1999. 89(1): p. v-viii. 7. Andersen, L., et al., A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity. Molecular and cellular biology, 1993. 13(1): p. 487-495. 8. Xu, G.F., et al., The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell, 1990. 62(3): p. 599-608. 9. Le, L.Q. and L.F. Parada, Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene, 2007. 26(32): p. 4609-16. 10. Legius, E., et al., Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet, 1993. 3(2): p. 122-6. 11. Li, Y., et al., Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell, 1992. 69(2): p. 275-81. 12. Martin, G.A., et al., The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell, 1990. 63(4): p. 843-9. 13. Shen, M.H., P.S. Harper, and M. Upadhyaya, Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet, 1996. 33(1): p. 2-17. 14. Crowe, F.W., Axillary Freckling as a Diagnostic Aid in Neurofibromatosis. Ann Intern Med, 1964. 61: p. 1142-3. 15. Koontz, N.A., et al., Schwannomatosis: the overlooked neurofibromatosis? AJR Am J Roentgenol, 2013. 200(6): p. W646-53. 16. This, N., National Institutes of Health consensus development conference statement: management of hepatitis C: 2002—June 10-12, 2002. Management, 2002. 2002. 17. DeBella, K., J. Szudek, and J.M. Friedman, Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics, 2000. 105(3): p. 608-614. 18. Friedman, J.M., Epidemiology of neurofibromatosis type 1. Am J Med Genet, 1999. 89(1): p. 1-6. 19. Levy, A.D., et al., From the archives of the AFIP: abdominal neoplasms in patients with neurofibromatosis type 1: radiologic-pathologic correlation. Radiographics, 2005. 25(2): p. 455-80. 20. Huson, S., P. Harper, and D. Compston, Von Recklinghausen neurofibromatosis A clinical and population study in south-east Wales. Brain, 1988. 111(6): p. 1355-1381. 21. Riccardi, V.M., J.E. Womack, and T. Jacks, Neurofibromatosis and related tumors. Natural occurrence and animal models. The American journal of pathology, 1994. 145(5): p. 994. 22. Yeates, K.O., et al., Pediatric neuropsychology: Research, theory, and practice. 2009: Guilford Press. 23. Alwan, S., S. Tredwell, and J. Friedman, Is osseous dysplasia a primary feature of neurofibromatosis 1 (NF1)? Clinical genetics, 2005. 67(5): p. 378-390. 24. Gilbert, A. and R. Brockman, Congenital pseudarthrosis of the tibia: long-term followup of 29 cases treated by microvascular bone transfer. Clinical orthopaedics and related research, 1995. 314: p. 37-44. 25. Kuorilehto, T., et al., Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporosis international, 2005. 16(8): p. 928-936. 26. McGaughran, J.M., et al., A clinical study of type 1 neurofibromatosis in north west England. J Med Genet, 1999. 36(3): p. 197-203. 27. Poliak, S. and E. Peles, The local differentiation of myelinated axons at nodes of Ranvier. Nature Reviews Neuroscience, 2003. 4(12): p. 968-980. 28. Simons, M. and J. Trotter, Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol, 2007. 17(5): p. 533-40. 29. Schwarz, J.R., G. Reid, and H. Bostock, Action potentials and membrane currents in the human node of Ranvier. Pflugers Arch, 1995. 430(2): p. 283-92. 30. Goldin, A.L., Diversity of Mammalian Voltage‐Gated Sodium Channels. Annals of the New York Academy of Sciences, 1999. 868(1): p. 38-50. 31. Caldwell, J.H., et al., Sodium channel Nav1. 6 is localized at nodes of Ranvier, dendrites, and synapses. Proceedings of the National Academy of Sciences, 2000. 97(10): p. 5616-5620. 32. Bostock, H. and P. Grafe, Activity‐dependent excitability changes in normal and demyelinated rat spinal root axons. The Journal of Physiology, 1985. 365(1): p. 239-257. 33. Burke, D., M.C. Kiernan, and H. Bostock, Excitability of human axons. Clin Neurophysiol, 2001. 112(9): p. 1575-85. 34. Cappelen‐Smith, C., C.S.Y. Lin, and D. Burke, Activity‐dependent hyperpolarization and impulse conduction in motor axons in patients with carpal tunnel syndrome. Brain, 2003. 126(4): p. 1001-1008. 35. Aminoff, M.J., Aminoff's Electrodiagnosis in Clinical Neurology: Expert Consult-Online. 2012: Elsevier Health Sciences. 36. Krarup, C. and M. Moldovan, Nerve conduction and excitability studies in peripheral nerve disorders. Curr Opin Neurol, 2009. 22(5): p. 460-6. 37. Woodruff, J.M., Pathology of tumors of the peripheral nerve sheath in type 1 neurofibromatosis. Am J Med Genet, 1999. 89(1): p. 23-30. 38. Sanguinetti, C., et al., The ultrastructure of schwannoma and neurofibroma of the peripheral nerves. Ital J Orthop Traumatol, 1991. 17(2): p. 237-46. 39. Bostock, H., K. Cikurel, and D. Burke, Threshold tracking techniques in the study of human peripheral nerve. Muscle Nerve, 1998. 21(2): p. 137-58. 40. Ferner, R.E., et al., Neurofibromatous neuropathy in neurofibromatosis 1 (NF1). J Med Genet, 2004. 41(11): p. 837-41. 41. Muir, D., et al., Tumorigenic properties of neurofibromin-deficient neurofibroma Schwann cells. Am J Pathol, 2001. 158(2): p. 501-13. 42. Duan, J.-H., et al., Ras signaling pathways mediate NGF-induced enhancement of excitability of small-diameter capsaicin-sensitive sensory neurons from wildtype but not Nf1+/− mice. Neuroscience letters, 2011. 496(2): p. 70-74. 43. Wang, Y., et al., Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/− mice. Journal of neurophysiology, 2010. 103(4): p. 2085-2094. 44. Woolf, C.J. and R.J. Mannion, Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet, 1999. 353(9168): p. 1959-64. 45. Devor, M., Pathophysiology of damaged nerves in relation to chronic pain. Textbook of pain, 1999: p. 129-164. 46. Lai, J., et al., Voltage-gated sodium channels and hyperalgesia. Annu Rev Pharmacol Toxicol, 2004. 44: p. 371-97. 47. Gallego, R., I. Ivorra, and A. Morales, Effects of central or peripheral axotomy on membrane properties of sensory neurones in the petrosal ganglion of the cat. J Physiol, 1987. 391(1): p. 39-56. 48. Gurtu, S. and P. Smith, Electrophysiological characteristics of hamster dorsal root ganglion cells and their response to axotomy. Journal of Neurophysiology, 1988. 59(2): p. 408-423. 49. Devor, M., et al., Na+ channel accumulation on axolemma of afferent endings in nerve end neuromas in Apteronotus. Neurosci Lett, 1989. 102(2-3): p. 149-54. 50. Novakovic, S.D., et al., Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci, 1998. 18(6): p. 2174-87. 51. Kiernan, M.C., et al., Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve, 2000. 23(3): p. 399-409. 52. Weiss, G., Sur la possibilite de rendre comparables entre eux les appareils servant a l'excitation electrique. Archives Italiennes de Biologie, 1990. 35(1): p. 413-445. 53. Boinagrov, D., J. Loudin, and D. Palanker, Strength–duration relationship for extracellular neural stimulation: numerical and analytical models. Journal of neurophysiology, 2010. 104(4): p. 2236-2248. 54. Kiernan, M.C., et al., Mutation in the Na+ channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability. Brain, 2005. 128(Pt 8): p. 1841-6. 55. Ng, K. and D. Burke, Nerve Excitability Studies in the Present Era. 2007, ACNR. 56. Baker, M., et al., Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J Physiol, 1987. 383(1): p. 45-67. 57. Bostock, H. and J.C. Rothwell, Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol, 1997. 498 ( Pt 1)(1): p. 277-94. 58. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952. 117(4): p. 500-44. 59. Bennett, M.I., et al., Using screening tools to identify neuropathic pain. Pain, 2007. 127(3): p. 199-203. 60. Ide, C., Peripheral nerve regeneration. Neurosci Res, 1996. 25(2): p. 101-21. 61. Stoll, G. and H.W. Muller, Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol, 1999. 9(2): p. 313-25. 62. Mert, T., et al., Changes in electrophysiological properties of regenerating rat peripheral nerves after crush injury. Neurosci Lett, 2004. 363(3): p. 212-7. 63. Stoll, G. and H.W. Müller, Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain pathology, 1999. 9(2): p. 313-325. 64. Wilson, G. and S. Chiu, Ion channels in axon and Schwann cell membranes at paranodes of mammalian myelinated fibers studied with patch clamp. The Journal of Neuroscience, 1990. 10(10): p. 3263-3274. 65. Nonaka, T., et al., Excitability changes of dorsal root axons following nerve injury: implications for injury-induced changes in axonal Na(+) channels. Brain Res, 2000. 859(2): p. 280-5. 66. Honmou, O., et al., Delayed depolarization and slow sodium currents in cutaneous afferents. J Neurophysiol, 1994. 71(5): p. 1627-37. 67. Smith, K.J., P.A. Felts, and R. Kapoor, REVIEW■: Axonal Hyperexcitability: Mechanisms and Role in Symptom Production in Demyelinating Diseases. The Neuroscientist, 1997. 3(4): p. 237-246. 68. Eglen, R.M., J.C. Hunter, and A. Dray, Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharmacol Sci, 1999. 20(8): p. 337-42. 69. Sobko, A., A. Peretz, and B. Attali, Constitutive activation of delayed‐rectifier potassium channels by a Src family tyrosine kinase in Schwann cells. The EMBO journal, 1998. 17(16): p. 4723-4734. 70. Walz, W., Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int, 2000. 36(4-5): p. 291-300. 71. Huang, H.Y., et al., Expression of A‐type K+ channel α subunits Kv4. 2 and Kv4. 3 in rat spinal lamina II excitatory interneurons and colocalization with pain‐modulating molecules. European Journal of Neuroscience, 2005. 22(5): p. 1149-1157. 72. Wang, Y., et al., Sensory neurons from Nf1 haploinsufficient mice exhibit increased excitability. J Neurophysiol, 2005. 94(6): p. 3670-6. 73. Bostock, H., et al., After‐effects of near‐threshold stimulation in single human motor axons. The Journal of physiology, 2005. 564(3): p. 931-940. 74. Kiernan, M.C. and H. Bostock, Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. Brain, 2000. 123 Pt 12(12): p. 2542-51. 75. Nodera, H. and R. Kaji, Nerve excitability testing and its clinical application to neuromuscular diseases. Clinical neurophysiology, 2006. 117(9): p. 1902-1916. 76. Yang, Q., et al., Effect of maturation on nerve excitability in an experimental model of threshold electrotonus. Muscle Nerve, 2000. 23(4): p. 498-506. 77. Jenkins, R. and S.P. Hunt, Long-term increase in the levels of c-jun mRNA and jun protein-like immunoreactivity in motor and sensory neurons following axon damage. Neurosci Lett, 1991. 129(1): p. 107-10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54026 | - |
| dc.description.abstract | 神經纖維瘤第一型(neurofibromatosis type1,NF1)是一種常見的神經性遺傳疾病。臨床表徵主要為皮膚色素沉積、神經纖維瘤、骨骼發育缺陷及其他神經、皮膚等症狀。將近40% NF1病患潛藏的叢狀神經根神經織維瘤可能病變為惡性週邊神經纖維髓鞘瘤(Malignant Peripheral Nerve Sheath Tumors;MPNST)。
許多NF1病患具有感覺方面的症狀和神經性疼痛,但其四肢上可以觀察到皮膚神經織維瘤但也可能沒有。臨床上,常見的體感覺誘發電位(somatosensory evoked potential;SSEP)和神經傳導檢查(Nerve conduction study)這兩種方法,但檢查結果通常沒有顯著異常。近年來,神經興奮性檢測(NET)開始被用來評估早期週邊神經系統疾病的電生理特性。NET透過QTRAC program中五個模式(1)刺激-反應曲線、(2)強度-持續時間、(3)閾值電緊張、(4)電流 - 電壓曲線、(5)復原週期,其記錄軸突興奮性的閾值。 本研究針對神經織維瘤第一型病患共92位進行神經興奮性檢查。評估正中神經的運動及感覺軸突之興奮性。首先將NF1病患分為兩類:第一類為有皮膚神經纖維瘤的病患(NF1(skin NF1)),第二類為有叢狀神經根纖維瘤與多發性神經根纖維瘤的病患(NF1(P+C))。透過NET所收集的數據參數分為以下三個群組進行比較分析:正常受試者、Skin NF與NF1 (P+C)。接著將NF1病患所填寫的ID pain疼痛問卷量表中,分數0分與1~5分者分為兩組。在神經興奮性檢查之運動軸突部份,NF1病患與正常受試者相比的變化顯示,NF1病患需明顯較高的電流以達到50% max response、stimulus-response slope 明顯減少、reobase也呈現偏高。而NF1 (skin NF)與NF1 (P+C)則是沒有顯著的差異。而在感覺軸突的研究結果中顯示,NF1病患與正常受試者相比在peak response 有較高的閾值電流、stimulus-response slope的斜率變小、SDTC變大而rheobase變低。閾值電緊張實驗(TE)的結果說明,NF1病患與正常受試者有顯著的差異。TE也顯示了 fanning-in pattern。NF1病患在relatively refractory period (RRP)有明顯的延長、refractoriness 2ms、super- and sub-excitability 閾值的百分比減少。同時運用ID Pain 疼痛問卷量表,評估NF1 病患的感覺方面的症狀表現。並將有症狀(1~5分)進一步與體感覺誘發電位(SSEP)做分析,發現N9-13跟numbness具有相關性。再將NF1病患分為NF1(score0)與 NF1(score1~5)做比較,發現 NF1病患與正常受試者並沒有顯著差異。除了在正中神經運動軸突的superexcitability和正中神經感覺軸突的accommodation half time的參數上具有差異性。 本研究中,我們將 NF1病患分組後進行NET。發現 NF1病患在NET中與正常受試者有顯著差異,但是這些差異與NF1的嚴重程度沒有相關。因為神經纖維瘤是由許旺細胞而來的,並不是受到髓鞘的缺陷或是腫瘤的擠壓,而導致nodal及paranodal regions離子通道的重新分配以及結間區膜內電量的改變。而此兩種異常都會影響NF1病患在NET中參數的結果。 | zh_TW |
| dc.description.abstract | Neurofibromatosis type 1 (NF1) is a common neurological hereditary disorder. The main clinical symptoms include skin pigmentation, neoplasms, body defects and other neurocutaneous manifestations. Nearly 40% of NF1 patients harbor a plexiform neurofibroma which can be transformed into a Malignant Peripheral Nerve Sheath Tumor (MPNST).
Many NF1 patients had sensory symptoms and neuropathic pain can be seen in limbs with/without a local skin neurofibroma. The conventional somatosensory evoked potential or nerve conduction studies are usually unremarkable. Recently, nerve excitability test (NET) has been introduced to evaluate the electrophysiological properties in early stage of disease in peripheral nervous system. NET records the axonal excitability threshold using five modes of QTRAC program: 1) stimulation-response curve, 2) strength-duration curve, 3) threshold electrotonus (TE), 4) current-voltage (I/V) curve, and 5) recovery cycle (RC). We have recruited 92 NF1 patients for the study. The excitability of motor and sensory axons of the median nerve was evaluated. There were two subclassifications for the NF1 patients. Firstly, we classified the NF1 patients into NF1 with skin neurofibroma (NF1 (skin NF)) and NF1 with plexiform or Christmas-tree like neurofibroma (NF1 (P+C)). The NET indices from normal control, NF1 (skin NF) and NF1 (P+C) were collected for comparison. In the second part, the NF1 patients had been subdivided into NF1 with ID pain score, 0 and those with score 1~5. The changes in NET indices of motor axons in NF1 patients showed that compared with normal controls, NF1 patients had a significant higher current to achieve the 50% of maximum response, a reduced slope of stimulus-response curve, and a higher reobase. There is no significant difference between the groups of NF1 (skin NF) and NF1 (P+C). In sensory study, NF1 patients had a higher threshold current in peak response, a lower slope of stimulus-response curve, a higher SDTC and a shorter reobase as compared with controls. The threshold-electrotonus study demonstrated that NF1 patients had a significant index changes as compared to controls. The TE study showed a fanning-in pattern. NF1 patients showed a significant increase of relatively refractory period (RRP), a reduced refractoriness at 2 ms, and a reduced super- and sub-excitability. The questionnaire of ID pain has been collected to evaluate the sensory symptoms in NF1 patients. The patients with score 1~5 and numbness had a prolong latency of N9-13 in SSEP. While subclassified the NF1 patients into NF1 (score 0) and NF1 (score 1~5), there were no significant difference among the NF1 patients and controls, except the superexcitability in median motor axons and the accommodation half time in median sensory axons. In the study, we subclassified the NF1 patients and compared the NET indices. NF1 patients had a significant change in NET indices as compared to controls, but the change did not correlate with the disease severity. Since neurofibroma is derived from Schwann cells, either a defect in myelin formation or a tumor compression would result in ion-channel redistribution at nodal or paranodal regions and/or changes in membrane capacity at internodal area. Both abnormalities have impacts on the changes in NET indices of axons from NF1 patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:37:03Z (GMT). No. of bitstreams: 1 ntu-104-P02448002-1.pdf: 1458903 bytes, checksum: 76ace122641b070b5c3ef9224b7d3d0d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 第一章、 研究背景與動機 1 1.1神經纖維瘤之疾病介紹 1 1.2神經纖維瘤之臨床表徵 2 1.2.1咖啡牛奶斑(Café-au-lait spots) 3 1.2.2雀斑(Freckling) 3 1.2.3單一神經纖維瘤(Neurofibromas) 3 1.2.4叢狀神經纖維瘤(Plexiform Neurofibromas) 3 1.2.5惡性週邊神經纖維髓鞘瘤(Malignant Peripheral Nerve Sheath Tumors) 4 1.2.6虹膜斑塊(Lisch nodule) 4 1.2.7骨骼構造變形異常 4 1.3電生理概論 5 1.4 神經訊息之傳遞機轉 5 1.4.1靜止膜電位(Resting Membrane Protential;RMP) 6 1.4.2極化反應 6 1.4.3動作電位(Action Protential) 6 1.4.4有髓鞘神經纖維上的傳遞-跳躍傳導 7 1.5軸突興奮性 7 1.6閾值追蹤方法(threshold tracking) 8 1.7研究動機與目的 9 1.8遺傳諮詢 11 第二章、 研究方法 12 2.1 受試者來源 12 2.2 受試者選擇 12 2.3實驗設計 13 2.4實驗儀器及器材 17 2.4.1實驗儀器 17 2.4.2獨立式雙極性恆流刺激器(DS5-Isolated Bipolar Constant Current Stimulator) 17 2.4.3電子訊號擴大接收器連接自肌電圖儀器(The electromyography;EMG) 17 2.5實驗流程 18 2.6體感覺誘發電位檢查(somatosensory evoked potential;SSEP) 19 2.7 ID pain疼痛問卷量表 19 2.8 資料統計分析 20 第三章、 結果 21 3.1基本人口學資料及神經纖維瘤第一型與臨床表徵之相關性 21 3.2神經纖維瘤患者的運動軸突興奮性檢查的參數特徵 21 3.2.1刺激-反應曲線(SR;stimulation-response curve) 22 3.2.2強度-持續時間曲線(Strength-duration curve) 22 3.2.3閾值電緊張(Threshold electrotonus) 22 3.2.4電流-電壓曲線(Current-voltage curve) 23 3.2.5復原曲線(Recovery cycle) 23 3.3神經纖維瘤患者的感覺軸突興奮性特徵 24 3.3.1刺激-反應曲線(SR;stimulation-response curve) 24 3.3.2強度-持續時間曲線(Strength-duration curve) 24 3.3.3閾值電緊張(Threshold electrotonus) 25 3.3.4電流-電壓曲線(Current-voltage curve) 26 3.3.5復原曲線(Recovery cycle) 26 3.4 ID Pain疼痛量表分數總和之分析比較 27 3.5 ID Pain疼痛量表症狀與體感覺誘發電位(SSEP)之分析比較 27 3.6 ID Pain疼痛量表跟神經興奮性檢查之分析 27 3.7感覺軸突興奮性檢查與體感覺誘發電位(SSEP)之分析 28 第四章、 討論 29 4.1 探討神經纖維瘤第一型病患的運動軸突興奮性 29 4.2 探討神經纖維瘤第一型病患的感覺軸突興奮性 31 4.3 ID Pain問卷量表與體感覺誘發電位(SSEP)之比較 33 4.4 ID Pain問卷量表與軸突興奮性之相關性 33 第五章、 結論 35 參考文獻 37 表一、ID Pain疼痛問卷量表 45 表二、人口學特徵 46 表三、正中神經之運動軸突和臨床表徵Plexiform & Christmas tree的比較 48 表四、正中神經之感覺軸突和臨床表徵Plexiform & Christmas tree的比較 50 表五、NF1病患ID Pain問卷量表 0分vs.1-5分之比較 52 表六、NF1病患ID Pain問卷量表和體感覺誘發電位之分析 53 表七、感覺軸突與體感覺誘發電位之比較 54 圖1、刺激-反應曲線(SR;stimulation-response curve) 55 圖2、強度-持續時間曲線(Strength-duration curve) 55 圖3、閾值電緊張(Threshold electrotonus) 56 圖4、電流-電壓曲線(Current-voltage curve) 56 圖5、復原曲線(Recovery cycle) 57 圖6、正中神經之運動軸突之刺激-反應曲線 58 圖7、正中神經之運動軸突之強度-持續時間曲線 58 圖8、正中神經之運動軸突之強度-持續時間曲線 59 圖9、正中神經之運動軸突之閾值電緊張 59 圖10、正中神經之運動軸突之電流-電壓曲線 60 圖11、正中神經之運動軸突之復原曲線 60 圖12、正中神經之感覺軸突之刺激-反應曲線 61 圖13、正中神經之感覺軸突之強度-持續時間曲線 61 圖14、正中神經之感覺軸突之強度-持續時間曲線 62 圖15、正中神經之感覺軸突之閾值電緊張 62 圖16、正中神經之感覺軸突之電流-電壓曲線 63 圖17、正中神經之感覺軸突之復原曲線 63 圖18、正中神經之運動軸突的Superexcitability(%)和ID Pain score大小的相關聯圖 64 圖19、正中神經之感覺軸突的Accommodation half time和ID Pain score大小的相關聯圖 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 神經興奮性 | zh_TW |
| dc.subject | 神經纖維瘤第一型 | zh_TW |
| dc.subject | 神經纖維瘤 | zh_TW |
| dc.subject | 軸突 | zh_TW |
| dc.subject | 離子通道 | zh_TW |
| dc.subject | 神經纖維瘤第一型 | zh_TW |
| dc.subject | 神經纖維瘤 | zh_TW |
| dc.subject | 神經興奮性 | zh_TW |
| dc.subject | 軸突 | zh_TW |
| dc.subject | 離子通道 | zh_TW |
| dc.subject | axonal | en |
| dc.subject | nerve excitability | en |
| dc.subject | ion channel | en |
| dc.subject | NF1 | en |
| dc.subject | ion channel | en |
| dc.subject | axonal | en |
| dc.subject | nerve excitability | en |
| dc.subject | neurofibroma | en |
| dc.subject | NF1 | en |
| dc.subject | neurofibroma | en |
| dc.title | 神經纖維瘤第一型病患之軸突興奮性研究 | zh_TW |
| dc.title | Axonal excitability in patient with Neurofibromatosis Type I | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志成,宋家瑩 | |
| dc.subject.keyword | 神經纖維瘤第一型,神經纖維瘤,神經興奮性,軸突,離子通道, | zh_TW |
| dc.subject.keyword | NF1,neurofibroma,nerve excitability,axonal,ion channel, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
