請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54014完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明學 | |
| dc.contributor.author | Yu-Zheng Liao | en |
| dc.contributor.author | 廖于政 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:36:36Z | - |
| dc.date.available | 2025-07-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-27 | |
| dc.identifier.citation | 1. de Cuba EM, Kwakman R, van Egmond M, Bosch LJ, Bonjer HJ, Meijer GA, te Velde EA: Understanding molecular mechanisms in peritoneal dissemination of colorectal cancer : future possibilities for personalised treatment by use of biomarkers, Virchows Archiv : an international journal of pathology 2012, 461:231-243
2. Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002, CA: a cancer journal for clinicians 2005, 55:74-108 3. Shinya H, Wolff WI: Morphology, anatomic distribution and cancer potential of colonic polyps, Annals of surgery 1979, 190:679-683 4. Bird NC, Mangnall D, Majeed AW: Biology of colorectal liver metastases: A review, Journal of surgical oncology 2006, 94:68-80 5. Carvalho B, Sillars-Hardebol AH, Postma C, Mongera S, Terhaar Sive Droste J, Obulkasim A, van de Wiel M, van Criekinge W, Ylstra B, Fijneman RJ, Meijer GA: Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism, Cellular oncology 2012, 35:53-63 6. Sheng S, Qiao M, Pardee AB: Metastasis and AKT activation, Journal of cellular physiology 2009, 218:451-454 7. Gupta GP, Massague J: Cancer metastasis: building a framework, Cell 2006, 127:679-695 8. Joyce JA, Pollard JW: Microenvironmental regulation of metastasis, Nature reviews Cancer 2009, 9:239-252 9. Wu SR, Cheng TS, Chen WC, Shyu HY, Ko CJ, Huang HP, Teng CH, Lin CH, Johnson MD, Lin CY, Lee MS: Matriptase is involved in ErbB-2-induced prostate cancer cell invasion, The American journal of pathology 2010, 177:3145-3158 10. Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior, Annual review of cell and developmental biology 2001, 17:463-516 11. Orlichenko LS, Radisky DC: Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development, Clinical & experimental metastasis 2008, 25:593-600 12. Dove A: MMP inhibitors: glimmers of hope amidst clinical failures, Nature medicine 2002, 8:95 13. Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH, Antalis TM: Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer, Cancer metastasis reviews 2003, 22:237-258 14. Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D, Foidart JM: Membrane associated proteases and their inhibitors in tumour angiogenesis, Journal of clinical pathology 2004, 57:577-584 15. Ono M, Kuwano M: Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs, Clinical cancer research : an official journal of the American Association for Cancer Research 2006, 12:7242-7251 16. Wheeler DL, Dunn EF, Harari PM: Understanding resistance to EGFR inhibitors-impact on future treatment strategies, Nature reviews Clinical oncology 2010, 7:493-507 17. Baselga J, Swain SM: Novel anticancer targets: revisiting ERBB2 and discovering ERBB3, Nature reviews Cancer 2009, 9:463-475 18. Hsuan JJ: Oncogene regulation by growth factors, Anticancer research 1993, 13:2521-2532 19. Marmor MD, Skaria KB, Yarden Y: Signal transduction and oncogenesis by ErbB/HER receptors, International journal of radiation oncology, biology, physics 2004, 58:903-913 20. Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis, Cell 1990, 61:759-767 21. de Castro-Carpeno J, Belda-Iniesta C, Casado Saenz E, Hernandez Agudo E, Feliu Batlle J, Gonzalez Baron M: EGFR and colon cancer: a clinical view, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2008, 10:6-13 22. Spano JP, Fagard R, Soria JC, Rixe O, Khayat D, Milano G: Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives, Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2005, 16:189-194 23. Nicholson RI, Gee JM, Harper ME: EGFR and cancer prognosis, European journal of cancer 2001, 37 Suppl 4:S9-15 24. Lockhart AC, Berlin JD: The epidermal growth factor receptor as a target for colorectal cancer therapy, Seminars in oncology 2005, 32:52-60 25. Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS: Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials, Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 1997, 8:1197-1206 26. Mitin N, Rossman KL, Der CJ: Signaling interplay in Ras superfamily function, Current biology : CB 2005, 15:R563-574 27. Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer, Oncogene 2007, 26:3291-3310 28. Bos JL: ras oncogenes in human cancer: a review, Cancer research 1989, 49:4682-4689 29. Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL, Yeo CJ, Hruban RH: Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2003, 16:902-912 30. Malumbres M, Barbacid M: RAS oncogenes: the first 30 years, Nature reviews Cancer 2003, 3:459-465 31. Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental disorders and cancer, Nature reviews Cancer 2007, 7:295-308 32. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, Nafa K, Riedel ER, Hsu M, Pao W, Miller VA, Ladanyi M: Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma, Clinical cancer research : an official journal of the American Association for Cancer Research 2008, 14:5731-5734 33. Porta M, Crous-Bou M, Wark PA, Vineis P, Real FX, Malats N, Kampman E: Cigarette smoking and K-ras mutations in pancreas, lung and colorectal adenocarcinomas: etiopathogenic similarities, differences and paradoxes, Mutation research 2009, 682:83-93 34. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, McAllister PK, Morton RF, Schilsky RL: American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy, Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2009, 27:2091-2096 35. Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB: Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells, Cancer Res 1993, 53:1409-1415 36. Takeuchi T, Shuman MA, Craik CS: Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue, Proceedings of the National Academy of Sciences of the United States of America 1999, 96:11054-11061 37. Zhang Y, Cai X, Schlegelberger B, Zheng S: Assignment1 of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24-->q25 by in situ hybridization, Cytogenetics and cell genetics 1998, 83:56-57 38. Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, O'Brien TJ: Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2001, 22:104-114 39. Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C, Schwartz RH: Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains, Immunogenetics 1999, 49:420-428 40. Lee MS, Tseng IC, Wang Y, Kiyomiya K, Johnson MD, Dickson RB, Lin CY: Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain, American journal of physiology Cell physiology 2007, 293:C95-105 41. Kim C, Cho Y, Kang CH, Kim MG, Lee H, Cho EG, Park D: Filamin is essential for shedding of the transmembrane serine protease, epithin, EMBO reports 2005, 6:1045-1051 42. Oberst MD, Williams CA, Dickson RB, Johnson MD, Lin CY: The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor, The Journal of biological chemistry 2003, 278:26773-26779 43. Benaud C, Dickson RB, Lin CY: Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor, Eur J Biochem 2001, 268:1439-1447 44. Cho EG, Schwartz RH, Kim MG: Shedding of membrane epithin is blocked without LDLRA4 and its protease activation site, Biochemical and biophysical research communications 2005, 327:328-334 45. Uhland K: Matriptase and its putative role in cancer, Cellular and molecular life sciences : CMLS 2006, 63:2968-2978 46. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH: Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation, Genes & development 2005, 19:1934-1950 47. Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M, Williams A, al-Nafussi A, Smyth JF, Gabra H, Sellar GC: Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters, Clinical cancer research : an official journal of the American Association for Cancer Research 2002, 8:1101-1107 48. Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland NJ, Ball RY, Edwards DR: Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues, British journal of cancer 2005, 92:2171-2180 49. Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB, Reagan-Shaw S, Jarrard DF, Mukhtar H: A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1, Cancer Epidemiol Biomarkers Prev 2006, 15:217-227 50. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, Camp RL: Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer, Cancer research 2003, 63:1101-1105 51. Santin AD, Cane S, Bellone S, Bignotti E, Palmieri M, De Las Casas LE, Anfossi S, Roman JJ, O'Brien T, Pecorelli S: The novel serine protease tumor-associated differentially expressed gene-15 (matriptase/MT-SP1) is highly overexpressed in cervical carcinoma, Cancer 2003, 98:1898-1904 52. Benaud CM, Oberst M, Dickson RB, Lin CY: Deregulated activation of matriptase in breast cancer cells, Clinical & experimental metastasis 2002, 19:639-649 53. Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M, Dickson RB, Lin CY: Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo, The American journal of pathology 2001, 158:1301-1311 54. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ: Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice, Cancer research 1988, 48:6863-6871 55. Morikawa K, Walker SM, Jessup JM, Fidler IJ: In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice, Cancer research 1988, 48:1943-1948 56. Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, Johnson MD, Dickson RB, Lin CY: Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells, American journal of physiology Cell physiology 2006, 291:C40-49 57. Doger FK, Meteoglu I, Tuncyurek P, Okyay P, Cevikel H: Does the EGFR and VEGF expression predict the prognosis in colon cancer?, European surgical research Europaische chirurgische Forschung Recherches chirurgicales europeennes 2006, 38:540-544 58. Bocheva G, Rattenholl A, Kempkes C, Goerge T, Lin CY, D'Andrea MR, Stander S, Steinhoff M: Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer, The Journal of investigative dermatology 2009, 129:1816-1823 59. Chattopadhyay S, Shubayev VI: MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway, Glia 2009, 57:1316-1325 60. Ingraham CA, Park GC, Makarenkova HP, Crossin KL: Matrix metalloproteinase (MMP)-9 induced by Wnt signaling increases the proliferation and migration of embryonic neural stem cells at low O2 levels, The Journal of biological chemistry 2011, 286:17649-17657 61. Galkin AV, Mullen L, Fox WD, Brown J, Duncan D, Moreno O, Madison EL, Agus DB: CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts, The Prostate 2004, 61:228-235 62. Al-Mulla F, MacKenzie EM: Differences in in vitro invasive capacity induced by differences in Ki-Ras protein mutations, The Journal of pathology 2001, 195:549-556 63. Park S, Jung HH, Park YH, Ahn JS, Im YH: ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression, Biochemical and biophysical research communications 2011, 407:680-686 64. Domoto T, Takino T, Guo L, Sato H: Cleavage of hepatocyte growth factor activator inhibitor-1 by membrane-type MMP-1 activates matriptase, Cancer science 2012, 103:448-454 65. Lee, M.-S., Matrix-Degrading Type II Transmembrane Serine protease Matriptase: Its Role in Cancer Development and Malignancy. J. Cancer Mol, 2006. 2(5): p. 183-190. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54014 | - |
| dc.description.abstract | 表皮生長因子受器(EGFR)訊息傳遞被認為與大腸癌的侵襲和轉移是有著莫大關係。而在臨床的分析發現,若將病患施予表皮生長因子受器(EGFR)抑制劑作標靶治療,對於具K-Ras 基因發生突變的病人,其治療效果通常是不佳的。然而表皮生長因子受器與K-Ras 促使大腸直腸癌惡化之進程、侵襲與轉移的詳細機制,仍有許多不了解。在本篇研究中,我們利用一組人類大腸癌惡化轉移細胞模式,包括KM12C, KM12-L4, KM12-SM細胞,其中KM12-L4、 KM12-SM由細胞KM12C經轉移篩選而來,相較KM12C細胞具更強的侵襲與轉移能力。由我們的結果顯示, 表皮生長因子受器的蛋白質表達量、磷酸化程度,以及間質蛋白酶的活性,在具高轉移侵襲力的大腸癌KM-L4和KM12-SM細胞中,與KM12C相較下均明顯的增加,並與細胞的侵襲能力呈現正相關。再者, 利用基因剔除的實驗,發現表皮生長因子受器及間質蛋白酶,均參與EGF所誘發增加的大腸癌細胞侵襲能力。同時,進一步由抑制劑的實驗發現,EGF可以透過活化PI3K/AKT而非MEK/Erk1/2之訊息路徑,進而活化間質蛋白酶及促進大腸癌細胞侵襲力的上升。然而, 本研究也進一步探討表皮生長因子受器下游K-Ras蛋白在大腸癌侵襲能力扮演之角色。我們利用PCR方法得到wild-type K-Ras, 並經 site-directed mutagenesis技術, 建立了2個持續活化的mutant K-Ras (G12D and G13D). 結果顯示大量表達的K-Ras 的組別 (wild-type, G12D and G13D) 可以促進KM12C 細胞的侵襲能力及間質蛋白酶的活化。同時我們由 PI3K 或 MEK 抑制劑的實驗結果發現, 暗示著PI3K 或 MEK 訊息路徑皆參與K-Ras 誘導之大腸癌細胞侵襲能力。有趣的是,具持續活化的mutant K-Ras (G12D and G13D) 細胞在表皮生長因子受器抑制劑afatinib的處理下, 對於細胞侵襲能力以及間質蛋白酶活性的抑制效果具有抵抗之能力, 暗示著K-Ras 誘導間質蛋白酶的活化 可能對於抗表皮生長因子受器治療之抗藥性扮演角色。綜合上述結果,表皮生長因子受器與K-Ras 透過PI3K/AKT 訊息活化間質蛋白酶進而促使大腸癌細胞侵襲能力增加。而我們的結果也進一步暗示, 或許以細胞周圍間絲胺酸蛋白酶為治療標的, 可以為抗表皮生長因子受器治療具抗藥性的病人, 提供一個新的治療策略。 | zh_TW |
| dc.description.abstract | EGFR signaling has been proposed to play an important role in colorectal cancer progression and metastasis. The clinical results have further shown that EGFR target therapies have no significant effect on the colorectal cancer patients with K-Ras mutations. However, how EGFR and K-Ras signaling promotes colorectal cancer progression, cell invasion and metastasis remains largely unknown. In this study, the roles of EGFR, K-Ras and membrane-anchored serine protease matriptase in colorectal cancer cell invasion were further addressed, using a human colorectal cancer metastasis progression model (KM12C, KM12-L4 and KM12-SM cells). KM12-L4 and KM12-SM cells are two cell lines generated from KM12C cells using in vivo metastatic selection, and exhibit higher invasion and metastasis potentials than KM12C cells. The results showed that the protein and tyrosine phosphorylation levels of EGFR were increased in KM12-L4 and KM12-SM cells compared to KM12C cells, which were concurrent with the activated levels of matriptase, an oncogenic pericellular membrane-anchored serine protease. Moreover, the results from knockdown approaches indicated that EGFR and matriptase were involved in colorectal cancer cell invasion. The results further showed that EGF could induce colorectal cancer cell invasion and matriptase activation, via PI3K/AKT but not MEK/Erk1/2 signaling. To further address the role of K-Ras, a downstream molecule of EGFR, in colorectal cancer cell invasion, I used PCR to isolate the coding region of wild-type K-Ras and utilized site-directed mutagenesis to construct two constitutively active mutants of K-Ras (G12D and G13D). The results showed that K-Ras-overexpression (wild-type, G12D and G13D) could enhance KM12C cell invasion and induce matriptase activation in the cells. The inhibition of PI3K or MEK signaling could reduce K-Ras-overexpression-induced colorectal cancer cell invasion, suggesting that both of the signal pathways are involved in K-Ras-induced cancer cell invasion. Interestingly, the KM12C cells with G12D or G13D K-Ras overexpression resisted to the inhibitory effect of afatinib, an EGFR inhibitor, on the cell invasion and matriptase activation, suggesting that K-Ras-induced matriptase activation may play a role in drug resistance for anti-EGFR therapy. The data together indicate that both EGFR signaling- and K-Ras-increased colorectal cancer cell invasion are via inducing PI3K/AKT signaling and matriptase activation. The results further suggest that targeting pericellular serine protease may provide a strategy for those colorectal cancer patients with a resistance to anti-EGFR therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:36:36Z (GMT). No. of bitstreams: 1 ntu-104-R02442001-1.pdf: 59576270 bytes, checksum: 18319512c9d4b3138226f33a18a542c6 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝....................................................i
中文摘要...............................................iii Abstarct................................................v Chapter1. Introduction..................................1 1.1 Colorectal cancer................................2 1.2 Cancer metastasis................................2 1.3 Signaling pathway and colorectal cancer development.............................................3 1.4 Matriptase.......................................8 1.5 Research motivation.............................11 Chapter 2. Materils and methods........................13 2.1 Materials.......................................14 2.2 Mothods.........................................20 2.3 Buffers.........................................31 2.4 Table...........................................35 Chapter 3. Results.....................................38 3.1 Levels of cell growth, migration, invasion, EGFR and EGFR phosphorylation in different colorectal cancer cells (KM12C, KM12-L4 and KM12-SM).....................39 3.2 Analysis of the gelatin zymography of MMP-2 and MMP-9, uPA as well as the activated levels of matriptase in KM12C, KM12-L4 and KM12-SM cells....................40 3.3 Effect of EGF on KM12C cell growth, cell invasion, EGFR and matriptase activation.........................42 3.4 Role of EGFR in colorectal cancer cell invasion and matriptase activation..............................43 3.5 Role of matriptase in EGF-induced colorectal cancer cell invasion...................................44 3.6 Effects of PI3K inhibitor (LY294002) and MEK inhibitor (PD98059) on EGF-induced KM12C cell invasion and matriptase activation..............................45 3.7 Overexpression of wild-type and constitutively active (CA) K-Ras induced KM12C cell growth and invasion...............................................46 3.8 K-Ras overexpression enhanced the activities of AKT, ERK and matriptase in KM12C cells.................47 3.9 Effects of PI3K inhibitor (LY294002) and MEK inhibitor (PD98059) on EGF- and K-Ras-induced KM12C cell invasion...............................................47 3.10 Effects of Afatinib on constitutively active (CA) K-Ras-induced colorectal cancer cell invasion and matriptase activation..................................48 3.11 Effect of matriptase knockdown on EGF- and K-Ras-induced KM12C cell invasion............................49 Chapter 4. Discussion..................................50 Chapter 5. Figures.....................................56 Chapter 6. Refrences...................................88 | |
| dc.language.iso | en | |
| dc.subject | 表皮生長因子 | zh_TW |
| dc.subject | K-Ras | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | 間質蛋白? | zh_TW |
| dc.subject | 表皮生長因子 | zh_TW |
| dc.subject | K-Ras | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | 間質蛋白? | zh_TW |
| dc.subject | EGFR | en |
| dc.subject | matriptase | en |
| dc.subject | K-Ras | en |
| dc.subject | colorectal cancer | en |
| dc.subject | metastasis | en |
| dc.subject | EGFR | en |
| dc.subject | matriptase | en |
| dc.subject | K-Ras | en |
| dc.subject | colorectal cancer | en |
| dc.subject | metastasis | en |
| dc.title | 間質蛋白酶在表皮生長因子與K-Ras所誘發之大腸癌細胞侵襲移動能力中扮演角色 | zh_TW |
| dc.title | The role of matriptase in EGF- and K-Ras-induced colorectal cancer cell invasion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 華國泰,林敬哲,黃祥博,黃敏銓 | |
| dc.subject.keyword | 表皮生長因子,間質蛋白?,大腸癌,轉移,K-Ras, | zh_TW |
| dc.subject.keyword | EGFR,matriptase,K-Ras,colorectal cancer,metastasis, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 58.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
