請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54013完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Yi-Fan Ho | en |
| dc.contributor.author | 何佾凡 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:36:33Z | - |
| dc.date.available | 2015-07-28 | |
| dc.date.copyright | 2015-07-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-27 | |
| dc.identifier.citation | chapter1
[1] B. D. Josephson, Phys. Lett 1, 251 (1962) [2] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Nature 446, 56 (2007) [3] N. Mizuno, B. Nielsen, and X. Du, Nat.Commun 4, 2716 (2013) [4] X. Du, I. Skachko, and E. Y. Andrei, Phys. Rev. B 77, 184507 (2008) [5] C. Ojeda - Aristizabal, M. Ferrier, S. Guéron, and H. Bouchiat,Phys. Rev. B 79, 165436 (2009) [6] K. Komatsu, C. Li, S. Autier-Laurent, H. Bouchiat, and S. Gu´eron,Phys. Rev. B 86, 115412 (2012) chpater2 [1] K. Onnes, Nobel Lecture, (1913) [2] Oak Ridge National Laboratory, Superconductor [3] C. P. Poole, H. A. Farach, R. J. Creswick, Superconductivity, (Academic, New York, 1995) chpater3 [1] K. S. Novoselov, D. Jiang, T. Booth, V. V. Khotkevich, S. M. Morozov, and A. K. Geim, PNAS 102, 10451 (2005). [2] K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). [3] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005). [4] C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayo, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer,Science 312, 1191 (2006). [5] Center for solid state physics at Institute of Physics Belgrade, Exfoliated graphene [6] W. Norimatsu, and M. Kusunoki, Phys. Chem. Chem. Phys, 16, 3501 (2014) [7] A. Kumar, and C. H. Lee, Synthesis and Biomedical Applications of Graphene: Present and Future Trends [8] P. R. Wallace, Phys. Rev. 71, 622 (1947). [9] M. S. Fuhrer, C. N. Lau, and A. H. MacDonald, Graphene: Materially Better Carbon [10] The Prashant Kamat Laboratory, University of Notre Dame,Raman spectroscopy, [11] Z. Yan, and A. R. Barron, Characterization of Graphene by Raman Spectroscopy chapter4 [1] A. Kumar, and C. H. Lee, Synthesis and Biomedical Applications of Graphene: Present and Future Trends [2] Quantum Design, Physical Property Measurement System [3] Quantum Design, Physical Property Measurement System, productBrochures, 1070-002 pdf [4] Quantum Design, Physical Property Measurement System, productBrochures, 1084-020 pdf [5] Oxford Instrument, product, cryogenic systems, Helium3 refrigerator with sorption pump chpater5 [1] B. L. Altshuler and A. G. Aronov, Electron-Electron Interactions in Disordered Systems (North-Holland, Amsterdam, 1985, edited by A. L. Efros and M. Pollak) [2] G. Bergmann, Phys. Rep. 107, 1 (1984). [3] B. Jouault, B. Jabakhanji, N. Camara, W. Desrat, C, Consejo, and J. Camassel, Phys. Rev. B 83, 195417 (2011). [4] J. H. Chen, L. Li, W. G. Cullen, E. D. Williams, and M. S. Fuhrer, Nature Phys. 7, 535 (2011). [5] A. A. Kozikov, A. K. Savchenko, B. N. Narozhny, and A. V. Shytov,Phys. Rev. B 82, 075424(2010). [6] W. Pan, I. A. J. Ross, S. W. Howell, T. Ohta, T. A. Friedmann, and C. T. Liang, New J. Phys. 13, 113005 (2011). [7] S. T. Lo, F. H. Liu, C. S. Hsu, C. S. Chuang, L. I. Huang, Y. Fukuyama, Y. F. Yang, R. E. Elmquist, and C. T. Liang, Nanotechnol. 25, 245201 (2014). [8] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys .63, 707(1980). [9] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97,146805 (2006). [10] C. W. J. Beenakker, and H. van. Houten, Quantum Transport in Semiconductor Nanostructures. [11] G. Bergmann, Phys .Rep. 107, 1 (1984). [12] D. E. Khmel’nitskii, and A. I. Larkin, Usp.Fiz.Nauk 136, 533 (1982) [13] D. E. Khmel’nitskii, Physica B 126, 235 (1984). [14] S. Chakravarty, and A. Schmid, Phys.Rep. 140, 193 (1986). [15] B. L .Altshuler, D. Khmelnitskii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980). [16] C. W. J. Beenakker, and H. van Houten, Phys .Rev. B 38, 3232 (1988). [17] B. L .Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44, 1288 (1980). [18] H. Fukuyama, J. Phys. Soc. Japan. 48, 2169 (1980). [19] B. L .Altshuler, and A. G. Aronov, Zh. E’ksp. Teor. Fiz. 77, 2028 (1979). [20] G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, V. I. Shashkin, O. I. Khrykin, and V. M. Daniltsev, Phys. Rev. B 64, 235327 (2001). [21] G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, V. I. Shashkin, O. I. Khrykin and B. N. Zvonkov, Phys. Rev. B 67, 205306 (2003). [22] G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, B. N. Zvonkov, E. A. Uskova , and A.A. Birukov, Phys. Rev. B 65, 235322 (2002). [23] J. Jobst, D. Waldmann, I. V. Gornyi, A. D. Mirlin, and H. B. Weber, Phys. Rev. Lett. 108, 106601 (2012). chpater6 [1] C. Ojeda-Aristizabal, M. Ferrier, S. Guéron, and H. Bouchiat, Phys. Rev. B 79, 165436 (2009) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54013 | - |
| dc.description.abstract | 這個論文主要分成兩個部分:第一個部分是分析探討氫嵌入石墨烯在低溫下的磁阻性質;第二個部分是研究高溫超導與石墨烯所形成的約瑟芬接面。
石墨烯是當今熱門的二維材料,有著特別的電性傳輸。利用氫嵌入的方式,使得石墨烯與基板的鍵結減弱,來探討在低溫下,電子間交互作用與弱局域性效應在不同磁場範圍對導電性的修正。我們的分析顯示,磁場會改變電子間的交互作用的前因子,這個結果有待更多的研究來說明。 在臨界溫度以下,超導體的電阻會降至為零,這個奇特的性質吸引許多人投入研究。高溫超導不同於第一類型超導,有著更高的臨界溫度和對外加磁場有不同的反應。我們對於高溫超導/石墨烯/高溫超導的約瑟芬接面在臨界溫度下,是否能夠傳導超導電流感到興趣。我們成功地將化學氣相沉積法石墨烯貼在兩個臨近的超導上,然而並沒有看到超導電流。在低溫下,由於電極的非歐姆性質,電流與電壓曲線呈非線性。為了改善超導與石墨烯的接面與石墨烯本身的品質,我們使用電流來進行退火。除了第一次退火使得接面電阻下降之外,其他次的退火使得電阻越來越高,效果有限。 | zh_TW |
| dc.description.abstract | There are two subjects in this thesis. In the first part, I will report our study on the low temperature resistance properties of hydrogen-intercalated epitaxial graphene. Graphene is a fantastic material with lots of special properties. By means of hydrogen intercalation, the interaction between the substrate and graphene is reduced. At low temperatures, except the classic Drude conductivity, there are two quantum corrections: electron-electron interactions (EEI) and weak localization (WL). EEI and WL have different magnetic dependences. To study these two different properties ranges, we measured the sample in the low field and high field regime. The analysis shows that the prefactor of EEI is dependent of magnetic field, which need to be further studied.
Second, we focused on the type-II superconductor. Superconductors can have no resistance below a critical temperature. This wonderful property has drawn many attentions. Type-II superconductor has higher critical temperature and has different magnetic properties compare to type-I superconductor. The proximity effect on YBCO-graphene-YBCO (SGS) junction was studied. We were interested in supercurrent in this SGS junction below the YBCO’s critical temperature. We successfully transferred a CVD graphene on the gap of the bridge. However, we did not observe the supercurrent in the junction. To improve the interface between superconductor and graphene and quality of the graphene, current anneal method was utilized, but had a limited effect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:36:33Z (GMT). No. of bitstreams: 1 ntu-104-R02245001-1.pdf: 6796068 bytes, checksum: 179c17d7b1c008322b413441212614b2 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審訂書 I
致謝 II 中文摘要 IV Abstract V Contents VII List of Figures X 1 Introduction 1 1.1 Hydrogen-intercalated epitaxial graphene on SiC 1 1.2 Superconductor/Graphene/Superconductor Josephson junction 2 1.3 Thesis overview 3 2.Superconductor 5 2.1 Properties of superconductor 5 2.1.1 Zero dc resistance 5 2.1.2 Perfect diamagnetism 6 2.2 Types of superconductor 7 2.3 Cooper pairs and macroscopic quantum model 8 2.4 Two characteristic lengths 9 2.4.1 Penetration length 10 2.4.2 Coherence length 11 2.5 Superconductor- Insulator- Superconductor tunneling 12 2.6 Josephson effect 14 2.6.1 Josephson equations 14 2.6.2 DC Josephson effect 17 2.6.3 AC Josephson effect 17 2.7 YBa2Cu307 superconductor 19 3.Graphene 21 3.1 Introduction 21 3.2 Fabrication of graphene 23 3.2.1 Exfoliation graphene 23 3.2.2 Epitaxial graphene 24 3.2.3 Chemical vapor deposition graphene 25 3.3 Band structure of graphene 26 3.4 Raman spectroscopy and characterization of graphene 28 3.4.1 Raman spectroscopy 28 3.4.2 G band 30 3.4.3 D and D^' band 30 3.4.4 D band 30 4.Device fabrications and experimental techniques 33 4.1 Fabrication of SGS device 33 4.2 Fabrication of hydrogen-intercalated epitaxial graphene device 38 4.3 Physical Property Measurement System 41 4.4 Cryogenic system 43 4.4.1 Wet He-3 cryostat 43 4.4.2 Dry He-3/He4 dilution refrigerator 44 4.5 Electrical measurement set-up 47 4.5.1 Two-terminal resistance measurement 47 4.5.2 Four-terminal resistance measurement 48 5. Localization and electron-electron interactions in hydrogen-intercalated epitaxial graphene 50 5.1 Introduction 50 5.2 Theory 51 5.2.1 Weak localization 51 5.2.2 Electron-Electron interactions 56 5.3 Results and discussions 57 6.Experimental results of SGS 72 6.1 Experiment results of PPMS 72 6.2 Experiment results of measurement system with a dilution refrigerator 75 7 Conclusion 80 7.1 Hydrogen-intercalated epitaxial graphene 80 7.2 SGS experiment 81 | |
| dc.language.iso | en | |
| dc.subject | 約瑟芬效應 | zh_TW |
| dc.subject | 高溫超導體 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 弱局域性 | zh_TW |
| dc.subject | 電子間交互作用 | zh_TW |
| dc.subject | 約瑟芬效應 | zh_TW |
| dc.subject | 高溫超導體 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 弱局域性 | zh_TW |
| dc.subject | 電子間交互作用 | zh_TW |
| dc.subject | Josephson Effect | en |
| dc.subject | weak localization | en |
| dc.subject | graphene | en |
| dc.subject | High critical temperature superconductor | en |
| dc.subject | Electron-electron interactions | en |
| dc.title | 弱局域效應與交互作用對石墨烯載子傳輸特性的影響研究 | zh_TW |
| dc.title | Influence of localization and interaction on charge transport in graphene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林立弘,杭大任 | |
| dc.subject.keyword | 高溫超導體,石墨烯,弱局域性,電子間交互作用,約瑟芬效應, | zh_TW |
| dc.subject.keyword | High critical temperature superconductor,graphene,weak localization,Electron-electron interactions,Josephson Effect, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
