請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5400完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智芬 | |
| dc.contributor.author | Ming-Hsiang Lee | en |
| dc.contributor.author | 李明祥 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:57:52Z | - |
| dc.date.available | 2014-10-09 | |
| dc.date.available | 2021-05-15T17:57:52Z | - |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-05-08 | |
| dc.identifier.citation | 1. Lima-Bessa, K.M. and Menck, C.F. (2005) Skin cancer: lights on genome lesions. Current biology : CB, 15, R58-61.
2. Liu, Z., Tan, C., Guo, X., Kao, Y.T., Li, J., Wang, L., Sancar, A. and Zhong, D. (2011) Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proceedings of the national academy of sciences of the United States of America, 108, 14831-14836. 3. Hanawalt, P.C. (2002) Subpathways of nucleotide excision repair and their regulation. Oncogene, 21, 8949-8956. 4. Volker, M., Mone, M.J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J.H., van Driel, R., van Zeeland, A.A. and Mullenders, L.H. (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Molecular cell, 8, 213-224. 5. Sugasawa, K., Ng, J.M., Masutani, C., Iwai, S., van der Spek, P.J., Eker, A.P., Hanaoka, F., Bootsma, D. and Hoeijmakers, J.H. (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Molecular cell, 2, 223-232. 6. van den Boom, V., Citterio, E., Hoogstraten, D., Zotter, A., Egly, J.M., van Cappellen, W.A., Hoeijmakers, J.H., Houtsmuller, A.B. and Vermeulen, W. (2004) DNA damage stabilizes interaction of CSB with the transcription elongation machinery. The Journal of cell biology, 166, 27-36. 7. O'Donovan, A., Davies, A.A., Moggs, J.G., West, S.C. and Wood, R.D. (1994) XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature, 371, 432-435. 8. Sijbers, A.M., de Laat, W.L., Ariza, R.R., Biggerstaff, M., Wei, Y.F., Moggs, J.G., Carter, K.C., Shell, B.K., Evans, E., de Jong, M.C. et al. (1996) Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell, 86, 811-822. 9. Liu, L., Lee, J. and Zhou, P. (2010) Navigating the nucleotide excision repair threshold. Journal of cellular physiology, 224, 585-589. 10. Ogi, T., Limsirichaikul, S., Overmeer, R.M., Volker, M., Takenaka, K., Cloney, R., Nakazawa, Y., Niimi, A., Miki, Y., Jaspers, N.G. et al. (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Molecular cell, 37, 714-727. 11. Lehmann, A.R. (2011) DNA polymerases and repair synthesis in NER in human cells. DNA repair, 10, 730-733. 12. Overmeer, R.M., Gourdin, A.M., Giglia-Mari, A., Kool, H., Houtsmuller, A.B., Siegal, G., Fousteri, M.I., Mullenders, L.H. and Vermeulen, W. (2010) Replication factor C recruits DNA polymerase delta to sites of nucleotide excision repair but is not required for PCNA recruitment. Molecular and cellular biology, 30, 4828-4839. 13. Moser, J., Kool, H., Giakzidis, I., Caldecott, K., Mullenders, L.H. and Fousteri, M.I. (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Molecular cell, 27, 311-323. 14. de Boer, J. and Hoeijmakers, J.H. (2000) Nucleotide excision repair and human syndromes. Carcinogenesis, 21, 453-460. 15. Halpern, J., Hopping, B. and Brostoff, J.M. (2008) Photosensitivity, corneal scarring and developmental delay: Xeroderma Pigmentosum in a tropical country. Cases journal, 1, 254. 16. Bertola, D.R., Cao, H., Albano, L.M., Oliveira, D.P., Kok, F., Marques-Dias, M.J., Kim, C.A. and Hegele, R.A. (2006) Cockayne syndrome type A: novel mutations in eight typical patients. Journal of human genetics, 51, 701-705. 17. Hashimoto, S. and Egly, J.M. (2009) Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Human molecular genetics, 18, R224-230. 18. Munch-Petersen, B. (1997) Thymidine in the micromolar range promotes rejoining of UVC-induced DNA strand breaks and prevents azidothymidine from inhibiting the rejoining in quiescent human lymphocytes. Mutation research, 383, 143-153. 19. Matsumoto, M., Yaginuma, K., Igarashi, A., Imura, M., Hasegawa, M., Iwabuchi, K., Date, T., Mori, T., Ishizaki, K., Yamashita, K. et al. (2007) Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J Cell Sci, 120, 1104-1112. 20. Holmberg, M. (1989) The effect of deoxynucleosides on repair of DNA breaks in UVC-irradiated human lymphocytes. Mutation research, 218, 33-39. 21. Green, M.H., Waugh, A.P., Lowe, J.E., Harcourt, S.A., Cole, J. and Arlett, C.F. (1994) Effect of deoxyribonucleosides on the hypersensitivity of human peripheral blood lymphocytes to UV-B and UV-C irradiation. Mutation research, 315, 25-32. 22. Overmeer, R.M., Moser, J., Volker, M., Kool, H., Tomkinson, A.E., van Zeeland, A.A., Mullenders, L.H. and Fousteri, M. (2011) Replication protein A safeguards genome integrity by controlling NER incision events. J Cell Biol, 192, 401-415. 23. Nordlund, P. and Reichard, P. (2006) Ribonucleotide reductases. Annual review of biochemistry, 75, 681-706. 24. Engstrom, Y., Eriksson, S., Jildevik, I., Skog, S., Thelander, L. and Tribukait, B. (1985) Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. The Journal of biological chemistry, 260, 9114-9116. 25. Bjorklund, S., Skog, S., Tribukait, B. and Thelander, L. (1990) S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry, 29, 5452-5458. 26. Chabes, A. and Thelander, L. (2000) Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. The Journal of biological chemistry, 275, 17747-17753. 27. Kuo, M.L., Hwang, H.S., Sosnay, P.R., Kunugi, K.A. and Kinsella, T.J. (2003) Overexpression of the R2 subunit of ribonucleotide reductase in human nasopharyngeal cancer cells reduces radiosensitivity. Cancer journal, 9, 277-285. 28. Guittet, O., Hakansson, P., Voevodskaya, N., Fridd, S., Graslund, A., Arakawa, H., Nakamura, Y. and Thelander, L. (2001) Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. The Journal of biological chemistry, 276, 40647-40651. 29. Pontarin, G., Ferraro, P., Hakansson, P., Thelander, L., Reichard, P. and Bianchi, V. (2007) p53R2-dependent ribonucleotide reduction provides deoxyribonucleotides in quiescent human fibroblasts in the absence of induced DNA damage. The Journal of biological chemistry, 282, 16820-16828. 30. Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y. and Nakamura, Y. (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404, 42-49. 31. Hakansson, P., Hofer, A. and Thelander, L. (2006) Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. The Journal of biological chemistry, 281, 7834-7841. 32. Pontarin, G., Ferraro, P., Bee, L., Reichard, P. and Bianchi, V. (2012) Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 13302-13307. 33. Carreras, C.W. and Santi, D.V. (1995) The catalytic mechanism and structure of thymidylate synthase. Annual review of biochemistry, 64, 721-762. 34. Le Francois, B.G., Maroun, J.A. and Birnboim, H.C. (2007) Expression of thymidylate synthase in human cells is an early G(1) event regulated by CDK4 and p16INK4A but not E2F. Br J Cancer, 97, 1242-1250. 35. Pontarin, G., Ferraro, P., Rampazzo, C., Kollberg, G., Holme, E., Reichard, P. and Bianchi, V. (2011) Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase. The Journal of biological chemistry, 286, 11132-11140. 36. Bradshaw, H.D., Jr. and Deininger, P.L. (1984) Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells. Molecular and cellular biology, 4, 2316-2320. 37. Johansson, M. and Karlsson, A. (1997) Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2. The Journal of biological chemistry, 272, 8454-8458. 38. Munch-Petersen, B., Cloos, L., Tyrsted, G. and Eriksson, S. (1991) Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. The Journal of biological chemistry, 266, 9032-9038. 39. Ke, P.Y. and Chang, Z.F. (2004) Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Molecular and cellular biology, 24, 514-526. 40. Arner, E.S. and Eriksson, S. (1995) Mammalian deoxyribonucleoside kinases. Pharmacology & therapeutics, 67, 155-186. 41. Rampazzo, C., Fabris, S., Franzolin, E., Crovatto, K., Frangini, M. and Bianchi, V. (2007) Mitochondrial thymidine kinase and the enzymatic network regulating thymidine triphosphate pools in cultured human cells. The Journal of biological chemistry, 282, 34758-34769. 42. Chanprasert, S., Wang, J., Weng, S.W., Enns, G.M., Boue, D.R., Wong, B.L., Mendell, J.R., Perry, D.A., Sahenk, Z., Craigen, W.J. et al. (2013) Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene. Molecular genetics and metabolism, 110, 153-161. 43. Chen, Y.L., Eriksson, S. and Chang, Z.F. (2010) Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. The Journal of biological chemistry, 285, 27327-27335. 44. Pontarin, G., Gallinaro, L., Ferraro, P., Reichard, P. and Bianchi, V. (2003) Origins of mitochondrial thymidine triphosphate: dynamic relations to cytosolic pools. Proceedings of the National Academy of Sciences of the United States of America, 100, 12159-12164. 45. Thelander, L. (2007) Ribonucleotide reductase and mitochondrial DNA synthesis. Nature genetics, 39, 703-704. 46. Wang, L. (2010) Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion. Nucleosides, nucleotides & nucleic acids, 29, 370-381. 47. Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S. and Elpeleg, O. (2001) Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature genetics, 29, 342-344. 48. Mandel, H., Szargel, R., Labay, V., Elpeleg, O., Saada, A., Shalata, A., Anbinder, Y., Berkowitz, D., Hartman, C., Barak, M. et al. (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature genetics, 29, 337-341. 49. Bourdon, A., Minai, L., Serre, V., Jais, J.P., Sarzi, E., Aubert, S., Chretien, D., de Lonlay, P., Paquis-Flucklinger, V., Arakawa, H. et al. (2007) Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nature genetics, 39, 776-780. 50. Zhou, X., Solaroli, N., Bjerke, M., Stewart, J.B., Rozell, B., Johansson, M. and Karlsson, A. (2008) Progressive loss of mitochondrial DNA in thymidine kinase 2-deficient mice. Human molecular genetics, 17, 2329-2335. 51. Akman, H.O., Dorado, B., Lopez, L.C., Garcia-Cazorla, A., Vila, M.R., Tanabe, L.M., Dauer, W.T., Bonilla, E., Tanji, K. and Hirano, M. (2008) Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Human molecular genetics, 17, 2433-2440. 52. Priego, E.M., Karlsson, A., Gago, F., Camarasa, M.J., Balzarini, J. and Perez-Perez, M.J. (2012) Recent advances in thymidine kinase 2 (TK2) inhibitors and new perspectives for potential applications. Current pharmaceutical design, 18, 2981-2994. 53. Ke, P.Y., Kuo, Y.Y., Hu, C.M. and Chang, Z.F. (2005) Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes & development, 19, 1920-1933. 54. Chang, Z.F., Huang, D.Y. and Hsue, N.C. (1994) Differential phosphorylation of human thymidine kinase in proliferating and M phase-arrested human cells. The Journal of biological chemistry, 269, 21249-21254. 55. Katsumi, S., Kobayashi, N., Imoto, K., Nakagawa, A., Yamashina, Y., Muramatsu, T., Shirai, T., Miyagawa, S., Sugiura, S., Hanaoka, F. et al. (2001) In situ visualization of ultraviolet-light-induced DNA damage repair in locally irradiated human fibroblasts. The Journal of investigative dermatology, 117, 1156-1161. 56. Nakagawa, A., Kobayashi, N., Muramatsu, T., Yamashina, Y., Shirai, T., Hashimoto, M.W., Ikenaga, M. and Mori, T. (1998) Three-dimensional visualization of ultraviolet-induced DNA damage and its repair in human cell nuclei. The Journal of investigative dermatology, 110, 143-148. 57. Helma, C. and Uhl, M. (2000) A public domain image-analysis program for the single-cell gel-electrophoresis (comet) assay. Mutation research, 466, 9-15. 58. Chang, Z.F. and Chen, K.Y. (1988) Regulation of ornithine decarboxylase and other cell cycle-dependent genes during senescence of IMR-90 human diploid fibroblasts. The Journal of biological chemistry, 263, 11431-11435. 59. Ferraro, P., Franzolin, E., Pontarin, G., Reichard, P. and Bianchi, V. (2010) Quantitation of cellular deoxynucleoside triphosphates. Nucleic acids research, 38, e85. 60. Rothkamm, K., Kruger, I., Thompson, L.H. and Lobrich, M. (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Molecular and cellular biology, 23, 5706-5715. 61. Tang, J., Cho, N.W., Cui, G., Manion, E.M., Shanbhag, N.M., Botuyan, M.V., Mer, G. and Greenberg, R.A. (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nature structural & molecular biology, 20, 317-325. 62. Schultz, L.B., Chehab, N.H., Malikzay, A. and Halazonetis, T.D. (2000) p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol, 151, 1381-1390. 63. Wojewodzka, M., Buraczewska, I. and Kruszewski, M. (2002) A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody. Mutation research, 518, 9-20. 64. Guirouilh-Barbat, J., Redon, C. and Pommier, Y. (2008) Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Molecular biology of the cell, 19, 3969-3981. 65. Lukas, C., Savic, V., Bekker-Jensen, S., Doil, C., Neumann, B., Pedersen, R.S., Grofte, M., Chan, K.L., Hickson, I.D., Bartek, J. et al. (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol, 13, 243-253. 66. Harrigan, J.A., Belotserkovskaya, R., Coates, J., Dimitrova, D.S., Polo, S.E., Bradshaw, C.R., Fraser, P. and Jackson, S.P. (2011) Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol, 193, 97-108. 67. Choi, J.H., Gaddameedhi, S., Kim, S.Y., Hu, J., Kemp, M.G. and Sancar, A. (2013) Highly specific and sensitive method for measuring nucleotide excision repair kinetics of ultraviolet photoproducts in human cells. Nucleic acids research. 68. Hu, J., Choi, J.H., Gaddameedhi, S., Kemp, M.G., Reardon, J.T. and Sancar, A. (2013) Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo. The Journal of biological chemistry, 288, 20918-20926. 69. Ferraro, P., Nicolosi, L., Bernardi, P., Reichard, P. and Bianchi, V. (2006) Mitochondrial deoxynucleotide pool sizes in mouse liver and evidence for a transport mechanism for thymidine monophosphate. Proceedings of the National Academy of Sciences of the United States of America, 103, 18586-18591. 70. Rothkamm, K., Kuhne, M., Jeggo, P.A. and Lobrich, M. (2001) Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Cancer Res, 61, 3886-3893. 71. Desler, C., Munch-Petersen, B., Stevnsner, T., Matsui, S., Kulawiec, M., Singh, K.K. and Rasmussen, L.J. (2007) Mitochondria as determinant of nucleotide pools and chromosomal stability. Mutation research, 625, 112-124. 72. Bester, A.C., Roniger, M., Oren, Y.S., Im, M.M., Sarni, D., Chaoat, M., Bensimon, A., Zamir, G., Shewach, D.S. and Kerem, B. (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell, 145, 435-446. 73. Burrell, R.A., McClelland, S.E., Endesfelder, D., Groth, P., Weller, M.C., Shaikh, N., Domingo, E., Kanu, N., Dewhurst, S.M., Gronroos, E. et al. (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature, 494, 492-496. 74. Labit, H., Goldar, A., Guilbaud, G., Douarche, C., Hyrien, O. and Marheineke, K. (2008) A simple and optimized method of producing silanized surfaces for FISH and replication mapping on combed DNA fibers. BioTechniques, 45, 649-652, 654, 656-648. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5400 | - |
| dc.description.abstract | 在休眠的纖維母細胞中,細胞質裡負責胸苷三磷酸(dTTP)合成的酵素表現量下降,導致胸苷三磷酸的量也顯著地下降。本篇論文研究闡釋了在這些休眠的纖維母細胞中,由粒腺體內胸腺嘧啶激酶2 (thymidine kinase 2) 所催化合成的胸苷酸(thymidylate)為紫外光照射後核內DNA修復之限制因子,並且在修復的後期,胸腺嘧啶激酶2缺失的細胞會有第二級的DNA雙股斷裂之發生。但是即便胸腺嘧啶激酶2缺失的細胞修復狀況較慢,最後DNA損傷的信號都會消失,並且這些修復後的休眠細胞在血清的刺激下也都可以再次地進入S細胞週期。而這些細胞在下一個G1細胞週期時會產生明顯的53BP1核小體 (53BP1 nuclear body),意味著這些細胞有嚴重的基因體壓力。總結,在暫時休眠的纖維母細胞中,粒腺體內胸腺嘧啶激酶2所催化合成的胸苷酸可以幫助紫外光照射後核內DNA有效及正確地修復以保持基因體的完整性。 | zh_TW |
| dc.description.abstract | In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, the data indicate that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of UV damage in the nuclear compartment in quiescent fibroblasts. Moreover, TK2 deficiency causes secondary DNA double-strand breaks (DSBs) formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite of slower repair in quiescent fibroblast deficient of TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. In conclusion, mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:57:52Z (GMT). No. of bitstreams: 1 ntu-103-F94442020-1.pdf: 2636920 bytes, checksum: 84704346fbb699549503987c035fac10 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書……………………………………………………………………………….i
謝誌……………………………………………………………………………………………ii 中文摘要……………………………………………………………………………………...iii Abstract………..…………………………………………………………………………….iv Table of contents………..………………………………………………………………....v Chapter I - Overview and Rationale…….……………………………………………...1 Part I Nucleotide excision repair (NER)…………………………………………......2 Part II dNTP pools synthesis in cycling and quiescent cells……………………..6 Part III Thymidine kinase 2 (TK2) and TK1 in dTTP metabolism……………….8 Part IV Role of TK2 in mitochondria biogenesis……………………………......…9 Rationale……..........…………………………………………………………………...11 Chapter II - The Contribution of Mitochondrial Thymidylate Synthesis in Preventing the Nuclear Genome Stress……...................................................12 Introduction………...……………………………………………………………….....13 Materials and Methods…………………………………………………………….....15 Results…….......………………………………………………………………………...20 Discussions……………………………………………………………………….....….28 Perspective….……………………………………………………............................33 Table………....…………………………………………………………………………..35 Figures and Legends…………………………………………………………………..36 References………………………………………………………………………………....64 Vita…………………………………………………………...………………………......…70 Appendix……………………………………….…………………………………………..71 | |
| dc.language.iso | en | |
| dc.title | 粒腺體內胸腺嘧啶激酶2對於維持核內基因體完整性之貢獻 | zh_TW |
| dc.title | Contribution of mitochondrial thymidine kinase 2 in maintaining nuclear genome integrity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 張明富 | |
| dc.contributor.oralexamcommittee | 許翱麟,謝小燕,李芳仁,鄧述諄 | |
| dc.subject.keyword | 胸腺嘧啶激?2,休眠細胞,DNA修復,基因體完整性, | zh_TW |
| dc.subject.keyword | TK2,quiescent cell,DNA repair,genome integrity, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-05-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 2.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
