請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54005完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳先琪(Shian-Chee Wu) | |
| dc.contributor.author | 石冠倫 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:36:16Z | - |
| dc.date.available | 2018-07-30 | |
| dc.date.copyright | 2015-07-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-27 | |
| dc.identifier.citation | Aggett, J. and G. A. O’Brlen (1985). 'Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri.' Environ. Sci. Technol., 19: 231-238.
Aggett, J. and L. S. Roberts (1986). 'Insight into the mechanism of accumulation of arsenate and phosphate in hydro lake sediments by measuring the rate of dissolution with ethylenediaminetetraacetic acid.' Environ. Sci. Technol. , 20: 183-186. Appelo, C. A. J., M. J. J. Van Der Weiden, C. Tournassat and L. Charlet (2002). 'Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic.' Environ. Sci. Technol., 36: 3096-3103. Bauer, M. and C. Blodau (2006). 'Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.' Sci Total Environ, 354(2-3): 179-190. Bennett, B. and M. J. Dudas (2003) 'Release of arsenic and molybdenum by reductive dissolution of iron oxides in a soil with enriched levels of native arsenic.' Journal of Environmental Engineering and Science 2, 265-272. Bostick, B. C., C. Chen and S. Fendorf (2004). 'Arsenite retention mechanisms within estuarine sediments of Pescadero, CA.' Environ. Sci. Technol., 38: 3299-3304. Bostick, B. C. and S. Fendorf (2003). 'Arsenite sorption on troilite (FeS) and pyrite (FeS2).' Geochimica et Cosmochimica Acta, 67(5): 909-921. Brammer, H. and P. Ravenscroft (2009). 'Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia.' Environ Int, 35(3): 647-654. Cama, J., M. P. Asta and P. Acero (2004). 'The importance of studying the arsenopyrite dissolution to prevent arsenic contamination.' Institute of Earth Sciences “Jaume Almera”, CSIC. Chatain, V., F. Sanchez, R. Bayard, P. Moszkowicz and R. Gourdon (2005). 'Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil.' J Hazard Mater, 122(1-2): 119-128. Chen, C.-C. (2003). 台灣嘉南平原新東及錦湖兩地沈積物砷富集與釋出之研究=: Accumulation and release of arsenic in sediments from hsindong and jinhu in chianan plain, Taiwan Master, National Taiwan University.Department of Geosciences Chen, I.-J. (2001). 宜蘭平原中興、五結和龍德岩心孔隙水及沉積物地球化學特性之硏究 =:Geochemical characteristics of porewater and sediments from Chung-hsing, Wu-jie and Long-de of I-lan plain, Taiwan Master, National Taiwan University.Department of Geosciences Cooper, D. C. and J. W. Morse (1996). 'The chemistry of Offatts Bayou, Texas: a seasonally highly sulfidic basin.' Estuaries. , 19(3): 595-611. Cornell, R. M. and U. Schwertmann (2004). The iron oxides: structure, properties, reactions, occurences and uses, second edition, Wiley-VCH; 2nd, Completely Revised and Extended Edition edition Couture, R. M., J. Rose, N. Kumar, K. Mitchell, D. Wallschlager and P. Van Cappellen (2013). 'Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.' Environ Sci Technol, 47(11): 5652-5659. Cullen, W. R. and K. J. Reimer (1989). 'Arsenic speciation in soil environment.' Chem. Rev., 89: 713-764. Culver, T. B., R. A. Brown and J. A. Smith (2000). 'Rate-limited sorption and desorption of 1,2-dichlorobenzene to a natural sand soil column.' Environ. Sci. Technol., 34: 2446-2452. Edenborn, H. M., N. Belzile, A. Mucci, J. Lebel and N. Silverberg (1986). 'Observations on the diagenetic behavior of arsenic in a deep coastal sediment.' Biogeochemistry, 2(359-376). Gao, X., Y. Wang, Q. Hu and C. Su (2011). 'Effects of anion competitive adsorption on arsenic enrichment in groundwater.' J Environ Sci Health A Tox Hazard Subst Environ Eng, 46(5): 471-479. Goldberg, S. (2002). 'Competitive adsorption of arsenate and arsenite on oxides and clay minerals.' Soil Sci. Soc. Am. J., 66: 413-421. Goldberg, S. and R. A. Glaubig (1988). 'Anion sorption on a calcareous, montmorillonitic soil—arsenic.' Soil Sci. Soc. Am. J., 52(5): 1297-1300. Goldberg, S. and C. T. Johnston (2001). 'Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling.' J Colloid Interface Sci, 234(1): 204-216. Gorby, M. S. (1988). 'Arsenic poisoning.' The Western Journal Of Medicine, 149(3): 308~315. Hartley-Whitaker, J., G. Ainsworth and A. A. Meharg (2001). 'Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity.' Plant, Cell and Environment, 24: 713-722. Heikens, A., G. M. Panaullah and A. A. Meharg (2007). 'Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety.' Rev. Environ. Contam. Toxicol., 189: 43-87. Huang, G., Z. Chen, J. Sun, F. Liu, J. Wang and Y. Zhang (2015). 'Effect of sample pretreatment on the fractionation of arsenic in anoxic soils.' Environ Sci Pollut Res Int, 22(11): 8367-8374. Huq, S. M. I., J. C. Joardar, S. Parvin, R. Correll and R. Nado (2006). 'Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation.' J Health Popul NUTR, 24(3): 305-316. Islam, M. N., B. K. Das and M. E. Huque (2012). 'Arsenic accumulation in common vegetables from irrigation.' Journal of Scientific Research, 4(3): 675-688. Jönsson, J. and D. M. Sherman (2008). 'Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters.' Chemical Geology, 255(1-2): 173-181. J., T. K. and F. S. (2008). 'Confounding Impacts of Iron Reduction on Arsenic Retention.' Environ. Sci. Technol. , 42: 4777–4783. Jacobs, L. W., J. K. Syers and D. R. Keeney (1970). 'Arsenic sorption by soils.' Soil Science Society of America Journal, 34(5): 750-754. Jambor, J. L. and J. E. Dutrizac (1988). 'Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide.' Chem. Rev., 98: 2549-2585. Khan, M. A., M. R. Islam, G. M. Panaullah, J. M. Duxbury, M. Jahiruddin and R. H. Loeppert (2010). 'Accumulation of arsenic in soil and rice under wetland condition in Bangladesh.' Plant and Soil, 333(1-2): 263-274. Kocar, B. D., T. Borch and S. Fendorf (2010). 'Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite.' Geochimica et Cosmochimica Acta, 74(3): 980-994. Lewis, J. and J. Sjostrom (2010). 'Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments.' J Contam Hydrol, 115(1-4): 1-13. Lin, C., J. Wang, H. Cheng and W. Ouyang (2015). 'Arsenic profile distribution of the wetland argialbolls in the Sanjiang plain of northeastern China.' Sci Rep, 5: 10766. Lin, H.-T. (1999). Interactions of Arsenic and Organic Substances. Master, National Chung Hsing University.Department of Soil and Environmental Sciences Lombi, E., R. S. Sletten and W.W.Wenzel (2000). 'Sequentially extracted arsenic from different size fractions of contaminated soils.' Water, Air, and Soil Pollution, 124: 319–332. Mamindy-Pajany, Y., C. Hurel, N. Marmier and M. Roméo (2009). 'Arsenic adsorption onto hematite and goethite.' Comptes Rendus Chimie, 12(8): 876-881. Manning, B. A. and S. Goldberg (1996). 'Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals.' Soil Sci. Soc. Am. J., 60: 121-131. McArthur, J. M., D. M. Banerjee, K. A. Hudson-Edwards, R. Mishra, R. Purohit, P. Ravenscroft, A. Cronin, R. J. Howarth, A. Chatterjee, T. Talukder, D. Lowry, S. Houghton and D. K. Chadha (2004). 'Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications.' Appl. Geochem., 19(8): 1255 - 1293. McArthur, J. M., P. Ravenscroft, S. Safiulla and M. F. Thirlwall (2001). 'Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh.' Water Resources Research, 37(1): 109-117. Meharg, A. A. and J. Hartley-Whitaker (2002). 'Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species.' New Phytologist 154: 29–43. Meharg, A. A. and M. M. Rahman (2003). 'Arsenic Contamination of Bangladesh Paddy Field Soils: Implications for Rice Contribution to Arsenic Consumption.' Environ. Sci. Technol., 37: 229-234. Mello, J., W. Roy, J. Talbott and J. Stucki (2005). 'Mineralogy and Arsenic Mobility in Arsenic-rich Brazilian Soils and Sediments.' Journal of Soils and Sediments, 6(1): 9-19. Moreno-Jimenez, E., E. Esteban and J. M. Penalosa (2012). 'The fate of arsenic in soil-plant systems.' Rev Environ Contam Toxicol, 215: 1-37. Mukherjee, A., M. von Bromssen, B. R. Scanlon, P. Bhattacharya, A. E. Fryar, M. A. Hasan, K. M. Ahmed, D. Chatterjee, G. Jacks and O. Sracek (2008). 'Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin.' J Contam Hydrol, 99(1-4): 31-48. Nickson, R. T., J. M. McArthur, P. Ravenscroft, W. G. Burgess and K. M. Ahmed (2000). 'Mechanism of arsenic release to groundwater, Bangladesh and West Bengal.' Appl. Geochem., 15: 403-413. Panaullah, G. M., T. Alam, M. B. Hossain, R. H. Loeppert, J. G. Lauren, C. A. Meisner, Z. U. Ahmed and J. M. Duxbury (2008). 'Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh.' Plant and Soil, 317(1-2): 31-39. Pedersen, H. D., D. Postma and R. Jakobsen (2006). 'Release of arsenic associated with the reduction and transformation of iron oxides.' Geochimica et Cosmochimica Acta, 70(16): 4116-4129. Pierce, M. L. and C. B. Moore (1982). 'Adsorption of arsenite and arsenate on amorphous iron hydroxide.' Water Res., 16: 1247-1253. Ratnaike, R. N. (2003). 'Acute and chronic arsenic toxicity.' Postgrad. Med. J., 79: 391~396. Raven, K. P., A. Jain and R. H. Loeppert (1998). 'Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes.' Environ. Sci. Technol., 32: 344-349. Roberts, L. C., S. J. Hug, J. Dittmar, A. Voegelin, R. Kretzschmar, B. Wehrli, O. A. Cirpka, G. C. Saha, M. Ashraf Ali and A. B. M. Badruzzaman (2009). 'Arsenic release from paddy soils during monsoon flooding.' Nature Geoscience, 3(1): 53-59. Sadiq, M. (1990). 'Arsenic chemistry in marine environments: a comparison between theoretical and field observations.' Marine Chem., 31: 285-297. Sadiq, M. (1997). 'Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. .' Water Air, and Soil Pollution, 93: 117-136. Saha, G. C. and M. A. Ali (2007). 'Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh.' Sci Total Environ, 379(2-3): 180-189. Schoolmeester, W. L. and D. R. White (1980). 'Arsenic poisoning.' South. Med. J.: 198~208. Straub, K. L., M. Benz and B. Schink (2001). 'Iron metabolism in anoxic environments at near neutral pH.' FEMS Microbiology Ecology, 34: 181-186. Stroud, J. L., G. J. Norton, M. R. Islam, T. Dasgupta, R. P. White, A. H. Price, A. A. Meharg, S. P. McGrath and F. J. Zhao (2011). 'The dynamics of arsenic in four paddy fields in the Bengal delta.' Environ Pollut, 159(4): 947-953. Su, S.-W. and Z.-S. Chen (2010). Soil pH and free Fe/Al oxides control As availability and fractionation in representative Taiwan soils contaminated by As. 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia. Takahashil, T., C.-Y. Park, H. Nakajima, H. Sekiya and K. Toriyama (1999). 'Ferric iron transformation in soils with rotation of irrigated rice-upland crops and effect on soil tillage properties.' Soil Science and Plant Nutrition, 45(1): 163-173. Thamdrup, B. (2000). 'Bacterial manganese and iron reduction in aquatic sediments.' Advances in Microbial Ecology: 41-84. Ullrich-Eberius, C. I., A. Sanz and A. J. Novacky (1988). 'Evaluation of Arsenate- and Vanadate-Associated Changes of Electrical Membrane Potential and Phosphate Transport in Lemna gibba G1.' Oxford JournalsScience & Mathematics Journal of Experimental Botany, 40(1): 119-128. Vink, B. W. (1996). 'Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams.' Chemical Geology 130: 21-30. Wagenet, R. J. and J. L. Hutson (1992). LEACHM –Leaching Estimation & Chemistry Model, Cornell University, Ithaca, NY. Wang, S. and C. N. Mulligan (2006). 'Effect of natural organic matter on arsenic release from soils and sediments into groundwater.' Environ Geochem Health, 28(3): 197-214. Wang, Y., G. Morin, G. Ona-Nguema, F. Juillot, F. Guyot, G. Calas and J. Gordon E. Brown (2010). 'Evidence for Different Surface Speciation of Arsenite and Arsenate on Green Rust: An EXAFS and XANES Study.' Environ. Sci. Technol., 44: 109–115. Wenzel, W. W., N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi and D. C. Adriano (2001). 'Arsenic fractionation in soils using an improved sequential extraction procedure.' Analytica Chimica Acta, 436: 309–323. Williams, P. N., H. Zhang, W. Davison, A. A. Meharg, M. Hossain, G. J. Norton, H. Brammer and M. R. Islam (2011). 'Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.' Environ. Sci. Technol., 45(14): 6080-6087. Wolthers, M., L. Charlet, C. H. van Der Weijden, P. R. van der Linde and D. Rickard (2005). 'Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite.' Geochimica et Cosmochimica Acta, 69(14): 3483-3492. Yamaguchi, N., T. Nakamura, D. Dong, Y. Takahashi, S. Amachi and T. Makino (2011). 'Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.' Chemosphere, 83(7): 925-932. 宜蘭縣環保局,宜蘭縣內土壤檢測結果數據(103 年版)【資料檔】。土壤及地下水污染整治業務網:http://works.ilepb.gov.tw/01003_W_01/info.html 農田水利聯合會(Taiwan Joint Irrigation Association),http://www.tjia.gov.tw/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54005 | - |
| dc.description.abstract | 台灣地下水含砷的現象來自於地層的還原環境,且含砷地下水長期被當作
灌溉水源之一。宜蘭冬山河岸測站之地下水檢測出含砷量約為0.2 mg/L,且有87.8% 為三價砷,施用於農地會有累積或溶出之虞,因此本研究針對重金屬砷利用序列萃取方式,了解重金屬於土壤中之相態變化,並利用動態模式模擬含砷地下水施用於土壤之後的型態變化及移動,最後估計出最大的施用容許量。本研究所採樣地點之農地表土與附近背景土壤含砷量分別為 64.98 mg/Kg及17.37 mg/Kg,含砷量超過台灣食用作物農地的管制標準(砷為60ppm),推測長期灌溉含砷地下水可能造成土壤砷的累積。根據土壤序列萃取結果,發現在農地土壤中,砷主要與無定型和結晶型鐵鋁鍵結,總共佔了約80%。實驗室土壤管柱淋洗試驗結果顯示,外添加的砷首先轉換成非特異性吸附與特異性吸附相態,且明顯地累積於表土2 公分以內,表土中的砷有約51% - 65%是與無定型和結晶型鐵鋁鍵結;亦會隨著灌溉水及入滲水的移動而離開土壤系統。比較旱地條件與水田條件下的土壤管柱試驗則可發現旱地條件下表土的砷累積更為明顯。 | zh_TW |
| dc.description.abstract | Arsenic (As) in groundwater in Taiwan comes from the natural materials in the aquifers under reducing conditions. As-contaminated groundwater has long been one of the irrigation sources. Arsenic concentration of groundwater close to Dong Shan River is 0.2 mg/L, 87.8% of which is in the form of As(III). In this study, the fractionation of arsenic in soils from Dong Shan River basin was performed to shed light on the movement and transformation of arsenic species, and the allowable rate of application of As-contaminated groundwater was estimated. The arsenic level of the soils from the sampled farmland (LT) and background soil (BG) are 65.0 mg/Kg and 17.4 mg/Kg, respectively. It implies that arsenic accumulation in soil under long-term irrigation of As-contaminated groundwater. The result of sequential extraction showed that 80% of total arsenic in the soil from farmland is associated with amorphous (F3) or crystalline hydrous Fe/Al oxides (F4). There are dynamic changes of different fractions in laboratory-scale soil columns with time, and the accumulation of arsenic in topsoil within 2 cm is obvious. Arsenic added to soil through irrigation was firstly converted to non-specific bound fraction (F1) and specific bound fraction (F2), but the net change of amorphous Fe/Al hydrous oxides-bound As (F3) or crystalline Fe/Al hydrous oxides-bound As (F4) was little. Arsenic was also found being removed from soil by leaching. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:36:16Z (GMT). No. of bitstreams: 1 ntu-104-R02541203-1.pdf: 1958601 bytes, checksum: 08f85049da7461ad99344ae0a41a7b48 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Abstract I
摘要 II Table of Contents III List of Figures VI List of Tables VII 1. Introduction 1 2. Literature Review 3 2.1 Toxicity of Arsenic 3 2.2 Arsenic Cycle in Water- Soil Environment 4 2.3 Arsenic in Water 5 2.4 Behavior of Arsenic in Soils 6 2.4.1 Retention of Arsenic 6 2.4.2 Contribution of Fe/Al to Retention of As 7 2.4.3 Association with Sulfur and Other Minerals 9 2.4.4 Soil Texture 10 2.4.5 Mobilization of Arsenic 11 2.5 Models 13 3. Materials and Methods 14 3.1 Study Site 14 3.2 Soil Pretreatment 15 3.3 Characteristics of Soils 15 3.3.1 Soil Texture 15 3.3.2 pH 16 3.3.3 Soil Organic Matter 16 3.3.4 Water Content 18 3.3.5 Total Arsenic in Soils 19 3.4 Fractionation of Arsenic in Soils 20 3.5 Column Experiment 22 3.6 Modeling the Change of Metal Fractions and Movement 24 4. Results and Discussion 27 4.1 The Basic Characteristics of the Studied Soils. 27 4.2 Column Experiment 28 4.2.1 Oxidation Reductive Potential of Soil 28 4.2.2 Leachate 30 4.2.3 Fractionation of BG Soil and LT Soil 31 4.2.4 Dynamics of Arsenic in Soils 32 4.2.5 Arsenic Accumulation in Columns 35 4.2.5.1 Change of Arsenic Accumulation with Time 35 4.2.5.2 Arsenic Accumulation under Different Irrigation Conditions 37 4.2.6 Arsenic in Topsoil and Subsoil 39 4.3 Model Simulation 43 4.3.1 Simulation of Arsenic Dynamics in Soils 43 4.3.2 Estimation of Arsenic Accumulation in Soils under Typical Irrigation Rate 48 4.3.3 Environmental Application of the Developed Model 48 5. Conclusion 49 6. Suggestion 49 7. Reference 50 Appendix 58 | |
| dc.language.iso | en | |
| dc.subject | 砷 | zh_TW |
| dc.subject | 土壤 | zh_TW |
| dc.subject | 管柱試驗 | zh_TW |
| dc.subject | 序列萃取 | zh_TW |
| dc.subject | 重金屬型態 | zh_TW |
| dc.subject | 地下水 | zh_TW |
| dc.subject | soil | en |
| dc.subject | fractionation | en |
| dc.subject | Arsenic | en |
| dc.subject | sequential extraction | en |
| dc.subject | leaching | en |
| dc.subject | groundwater | en |
| dc.title | 以土柱試驗模擬砷在農業土壤之動態 | zh_TW |
| dc.title | Dynamics of arsenic in agricultural soils: simulation by
soil column experiment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李達源(Dar-Yuan Lee),張尊國(Tsun-Kuo Chang) | |
| dc.subject.keyword | 砷,土壤,地下水,重金屬型態,序列萃取,管柱試驗, | zh_TW |
| dc.subject.keyword | Arsenic,soil,groundwater,fractionation,sequential extraction,leaching, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
