Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53983
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
dc.contributor.author | Li-Chen Huang | en |
dc.contributor.author | 黃麗臻 | zh_TW |
dc.date.accessioned | 2021-06-16T02:35:30Z | - |
dc.date.available | 2020-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-27 | |
dc.identifier.citation | Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Di(2-ethylhexyl)phthalate (DEHP). 2002. Bizzari SN, Blagoev M, Kishi A. Plasticizers. In: Chemical Economics Handbook. SRI Consulting, Menlo Park, CA, 2007;p.148. Online edition. Böttinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002;13(10):2600-2610. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 2006;25(23):5603-5613. Burns WC, Thomas MC. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev Mol Med. 2010;12:e17. Câmara J, Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair. 2010;3(1):2. Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, Sortino MA, Nicoletti F, Copani A, Vancheri C. TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res. 2008;57(4):274-282. Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis. Cell Tissue Res. 2012;347(1):103-116. Centers for Disease Control and Prevention (CDC). The Fourth National Report on Human Exposure to Environmental Chemicals. 2009. Chan CM, Wong KH, Chung WK, Chow TS, Wong PK. Photocatalytic degradation of di(2-ethylhexyl)phthalate adsorbed by chitin A. Water Sci Technol. 2007;56(7):125-134. Chen ML, Chen JS, Tang CL, Mao IF. The internal exposure of Taiwanese to phthalate--an evidence of intensive use of plastic materials. Environ Int. 2008;34(1):79-85. Cheng M, Liu H, Zhang D, Liu Y, Wang C, Liu F, Chen J. HMGB1 Enhances the AGE-Induced Expression of CTGF and TGF-β via RAGE-Dependent Signaling in Renal Tubular Epithelial Cells. Am J Nephrol. 2015;41(3):257-266. D'Amico G. Tubulointerstitium as predictor of progression of glomerular diseases. Nephron. 1999;83(4):289-295. David RM, Moore MR, Finney DC, Guest D. Chronic toxicity of di(2-ethylhexyl)phthalate in mice. Toxicol Sci. 2000;58(2):377-385. de Herreros AG, Peiró S, Nassour M, Savagner P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia. 2010;15(2):135-147. Deng YL, Xiong XZ, Cheng NS. Organ fibrosis inhibited by blocking transforming growth factor-β signaling via peroxisome proliferator-activated receptor γ agonists. Hepatobiliary Pancreat Dis Int. 2012;11(5):467-478. Ding Y, Choi ME. Regulation of autophagy by TGF-β: emerging role in kidney fibrosis. Semin Nephrol. 2014;34(1):62-71. Doi K, Leelahavanichkul A, Hu X, Sidransky KL, Zhou H, Qin Y, Eisner C, Schnermann J, Yuen PS, Star RA. Pre-existing renal disease promotes sepsis-induced acute kidney injury and worsens outcome. Kidney Int. 2008;74(8):1017-1025. Doi K, Okamoto K, Negishi K, Suzuki Y, Nakao A, Fujita T, Toda A, Yokomizo T, Kita Y, Kihara Y, Ishii S, Shimizu T, Noiri E. Attenuation of folic acid-induced renal inflammatory injury in platelet-activating factor receptor-deficient mice. Am J Pathol. 2006;168(5):1413-1424. Fromme H, Gruber L, Schlummer M, Wolz G, Böhmer S, Angerer J, Mayer R, Liebl B, Bolte G. Intake of phthalates and di(2-ethylhexyl)adipate: results of the Integrated Exposure Assessment Survey based on duplicate diet samples and biomonitoring data. Environ Int. 2007;33(8):1012-1020. Georgescu MM. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer. 2010;1(12):1170-1177. Grande JP. Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med. 1997;214(1):27-40. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG. Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem. 2000;275(4):2727-2732. Hauser R and Calafat A. Phthalates and human health. Occup Environ Med. 2005; 62(11):806-818. Harris RC, Neilson EG. Toward a unified theory of renal progression. Annu Rev Med. 2006;57:365-380. Hertig A, Verine J, Mougenot B, Jouanneau C, Ouali N, Sebe P, Glotz D, Ancel PY, Rondeau E, Xu-Dubois YC. Risk factors for early epithelial to mesenchymal transition in renal grafts. Am J Transplant. 2006;6(12):2937-2946. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210(5):623-634. Hu XY, Wen B, Shan XQ. Survey of phthalate pollution in arable soils in China. J Environ Monit. 2003;5(4):649-653. Huang PC, Kuo PL, Guo YL, Liao PC, Lee CC. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod. 2007;22(10):2715-2722. Huang PC, Tien CJ, Sun YM, Hsieh CY, Lee CC. Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere. 2008;73(4):539-544. Huang PC, Kuo PL, Chou YY, Lin SJ, Lee CC. Association between prenatal exposure to phthalates and the health of newborns. Environ Int. 2009;35(1):14-20. Huang LP, Lee CC, Hsu PC, Shih TS. The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril. 2011;96(1):90-94. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341-350. Jacobson A, Cunningham JL. Connective tissue growth factor in tumor pathogenesis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S8. Jönsson BA, Richthoff J, Rylander L, Giwercman A, Hagmar L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology. 2005;16(4):487-493. Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, Golub M, Henderson R, Hinberg I, Little R, Seed J, Shea K, Tabacova S, Tyl R, Williams P, Zacharewski T. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol. 2002;16(5):529-653. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776-1784. Kim SS, Song SH, Kim IJ, Jeon YK, Kim BH, Kwak IS, Lee EK, Kim YK. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36(3):656-661. Kitagishi Y, Matsuda S. Redox regulation of tumor suppressor PTEN in cancer and aging (Review). Int J Mol Med. 2013;31(3):511-515. Koch HM, Rossbach B, Drexler H, Angerer J. Internal exposure of the general population to DEHP and other phthalates--determination of secondary and primary phthalate monoester metabolites in urine. Environ Res. 2003;93(2):177-185. Koch HM, Bolt HM, Preuss R, Angerer J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol. 2005;79(7):367-376. Koch HM, Preuss R, Angerer J. Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure- an update and latest results. Int J Androl. 2006;29(1):155-165. Kuncio GS, Neilson EG, Haverty T. Mechanisms of tubulointerstitial fibrosis. Kidney Int. 1991;39(3):550-556. Kulkarni AA, Thatcher TH, Olsen KC, Maggirwar SB, Phipps RP, Sime PJ. PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PLoS One. 2011;6(1):e15909. Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F, Mazzeo P. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect. 2003;111(14):1783-1785. Lamouille S, Derynck R. Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs. 2011;193(1-2):8-22. Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 2012;125(Pt 5):1259-1273. Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, Griffin KA, Koesters R, Weinberg JM, Bidani AK, Kriz W, Venkatachalam MA. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol. 2012;302(9):F1210-1223. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-196. Lertsirisopon R, Soda S, Sei K, Ike M. Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. J Environ Sci (China). 2009;21(3):285-290. Lee K, Nelson CM. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev Cell Mol Biol. 2012;294:171-221. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15(1):1-12. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 2010;21(2):212-222. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684-696. Loff PD, Subotic U, Oulmi-Kagermann J, Kränzlin B, Reinecke MF, Staude C. Diethylhexylphthalate extracted by typical newborn lipid emulsions from polyvinylchloride infusion systems causes significant changes in histology of rabbit liver. JPEN J Parenter Enteral Nutr. 2007;31(3):188-193. Masszi A, Di Ciano C, Sirokmány G, Arthur WT, Rotstein OD, Wang J, McCulloch CA, Rosivall L, Mucsi I, Kapus A. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2003;284(5):F911-924. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19(23):2783-2810. Magdouli S, Daghrir R, Brar SK, Drogui P, Tyagi RD. Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. J Environ Manage. 2013;127:36-49. Martinez-Arguelles DB, Papadopoulos V. Identification of hot spots of DNA methylation in the adult male adrenal in response to in utero exposure to the ubiquitous endocrine disruptor plasticizer di-(2-ethylhexyl) phthalate. Endocrinology. 2015;156(1):124-33. Melnick RL. Is peroxisome proliferation an obligatory precursor step in the carcinogenicity of di(2-ethylhexyl)phthalate (DEHP)? Environ Health Perspect. 2001;109(5):437-442. Meeker JD, Calafat AM, Hauser R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect. 2007;115(7):1029-1034. Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19(11):4875-4887. Mortensen GK, Main KM, Andersson AM, Leffers H, Skakkebaek NE. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS). Anal Bioanal Chem. 2005;382(4):1084-1092. Nath KA. The tubulointerstitium in progressive renal disease. Kidney Int. 1998;54(3):992-994. Pan G, Hanaoka T, Yoshimura M, Zhang S, Wang P, Tsukino H, Inoue K, Nakazawa H, Tsugane S, Takahashi K. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect. 2006;114(11):1643-1648. Pei X, Duan Z, Ma M, Zhang Y, Guo L. Role of Ca/CaN/NFAT signaling in IL-4 expression by splenic lymphocytes exposed to phthalate (2-ethylhexyl) ester in spleen lymphocytes. Mol Biol Rep. 2014;41(4):2129-2142. Phillips BJ, James TE, Gangolli SD. Genotoxicity studies of di(2-ethylhexyl)phthalate and its metabolites in CHO cells. Mutat Res. 1982;102(3):297-304. Pham TT, Tyagi RD, Brar SK, Surampalli RY. Effect of ultrasonication and Fenton oxidation on biodegradation of bis(2-ethylhexyl) phthalate (DEHP) in wastewater sludge. Chemosphere. 2011;82(6):923-928. Rastaldi MP, Ferrario F, Giardino L, Dell'Antonio G, Grillo C, Grillo P, Strutz F, Müller GA, Colasanti G, D'Amico G. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int. 2002;62(1):137-146. Rozati R, Reddy PP, Reddanna P, Mujtaba R. Role of environmental estrogens in the deterioration of male factor fertility. Fertil Steril. 2002;78(6):1187-1194. Rusyn I, Peters JM, Cunningham ML. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol. 2006;36(5):459-479. Rusyn I, Corton JC. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat Res. 2012;750(2):141-158. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 2008;105(17):6392-6397. Stenchever MA, Allen MA, Jerominski L, Petersen RV. Effects of bis(2-ethylhexyl) phthalate on chromosomes of human leukocytes and human fetal lung cells. J Pharm Sci. 1976;65(11):1648-1651. Strutz F, Neilson EG. New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol. 2003;24(4):459-476. Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect. 2007;115(6):876-882. Suzuki T, Yaguchi K, Suzuki S, Suga T. Monitoring of phthalic acid monoesters in river water by solid-phase extraction and GC-MS determination. Environ Sci Technol. 2001;35(18):3757-3763. Tamguney T, Stokoe D. New insights into PTEN. J Cell Sci. 2007;120:4071-4079. Teresi RE, Shaiu CW, Chen CS, Chatterjee VK, Waite KA, Eng C. Increased PTEN expression due to transcriptional activation of PPARgamma by Lovastatin and Rosiglitazone. Int J Cancer. 2006;118(10):2390-2398. Tickner JA, Schettler T, Guidotti T, McCally M, Rossi M. Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med. 2001;39(1):100-111. U.S. Food and Drug Administration (FDA). Safety Assessment of Di(2-ethylhexyl)phthalate (DEHP) Released from PVC Medical Devices. 2014. Vitalone MJ, O'Connell PJ, Jimenez-Vera E, Yuksel A, Wavamunno M, Fung CL, Chapman JR, Nankivell BJ. Epithelial-to-mesenchymal transition in early transplant tubulointerstitial damage. J Am Soc Nephrol. 2008;19(8):1571-1583. Voss C, Zerban H, Bannasch P, Berger MR. Lifelong exposure to di-(2-ethylhexyl)-phthalate induces tumors in liver and testes of Sprague-Dawley rats. Toxicology. 2005;206(3):359-371. Ward JM, Diwan BA, Ohshima M, Hu H, Schuller HM, Rice JM. Tumor-initiating and promoting activities of di(2-ethylhexyl) phthalate in vivo and in vitro. Environ Health Perspect. 1986;65:279-291. Wams TJ. Diethylhexylphthalate as an environmental contaminant-a review. Sci Total Environ. 1987;66:1-16. Ward JM, Konishi N, Diwan BA. Renal tubular cell or hepatocyte hyperplasia is not associated with tumor promotion by di(2-ethylhexyl)phthalate in B6C3F1 mice after transplacental initiation with N-nitrosoethylurea. Exp Pathol. 1990;40(3):125-138. Ward JM, Peters JM, Perella CM, Gonzalez FJ. Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptor alpha-null mice. Toxicol Pathol. 1998;26(2):240-246. Warwas M, Piwowar A. Urinary cystatin C as a biomarker of renal tubular injury. Postepy Hig Med Dosw (Online). 2011;65:562-568. Wei Z, Song L, Wei J, Chen T, Chen J, Lin Y, Xia W, Xu B, Li X, Chen X, Li Y, Xu S. Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol Lett. 2012;212(2):212-221. Wei J, Li Z, Yuan F. Evodiamine might inhibit TGF-beta1-induced epithelial-mesenchymal transition in NRK52E cells via Smad and PPAR-gamma pathway. Cell Biol Int. 2014;38(7):875-880. Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):525-534. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009;15(5):416-428. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol. 2001;159(4):1465-1475. Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol. 2005;16(1):68-78. Yao Y, Wei H, Liu L, Liu L, Bai S, Li C, Luo Y, Zeng R, Han M, Ge S, Xu G. Upregulated DJ-1 promotes renal tubular EMT by suppressing cytoplasmic PTEN expression and Akt activation. J Huazhong Univ Sci Technolog Med Sci. 2011;31(4):469-475. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8(12):1398-1406. Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med (Berl). 2004;82(3):175-181. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429-1437. Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol. 2010;21(11):1819-1834. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6(10):931-940. Zhang YH, Zheng LX, Chen BH. Phthalate exposure and human semen quality in Shanghai: a cross-sectional study. Biomed Environ Sci. 2006;19(3):205-209. 李俊璋,郭保麟,黃柏菁:環境荷爾蒙對人體與動物之暴露評估及健康效應-子計畫一:懷孕婦女及新生兒體內Phthalates之背景暴露與健康風險評估(III),國科會計畫(NSC95-2621-Z-006-005-),2007。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53983 | - |
dc.description.abstract | 鄰苯二甲酸二(2-乙基己基)酯(di(2-ethylhexyl) phthalate, DEHP)為常用於添加在聚氯乙烯塑膠製品的塑化劑,隨塑膠製品的大量製造及使用,全球每年DEHP平均使用量已超過200萬噸,DEHP暴露於環境及生物體的頻率及劑量也隨之增加,其對環境與生物體的潛在危害性已不容忽視。目前文獻已指出DEHP對生殖系統、肝臟與腎臟具毒性,甚至國際癌症研究中心將其歸類為疑似致癌物。儘管過去研究已顯示DEHP會造成腎小管損傷與加劇腎炎病徵等,且具時間和劑量效應(time- and dose-dependent),但對於DEHP造成腎毒性之詳細分子機制仍未釐清。末期腎臟病在台灣的高盛行率及高發生率,已造成龐大的醫療及社會成本,其中腎小管及間質纖維化是末期腎臟病的共同病理特徵,故DEHP是否會誘導或加劇腎纖維化的發生,是值得被關注的。腎小管的上皮-間質轉換過程是腎纖維化的重要路徑之一,為此本研究以腎小管上皮細胞與疾病動物模式,探討DEHP是否經由上皮-間質轉換過程,導致腎纖維化的發生,及其機制為何。實驗發現使用25 μM DEHP暴露72小時,會導致大鼠腎近曲小管上皮細胞株的外觀形態由緊密接合鵝卵石狀轉為紡錘纖維狀,細胞存活率也略降至85%。但由流式細胞儀觀察DEHP對細胞週期及細胞凋亡的影響,指出DEHP可顯著誘導細胞停滯於G2/M週期,並引起少量(0.74%)的細胞凋亡,暗示25 μM DEHP主要透過改變細胞週期以至細胞存活率下降。另一方面,於DEHP暴露下,上皮細胞指標蛋白E-cadherin表現顯著下降,間質細胞指標蛋白(CTGF、α-SMA和Vimentin)與纖維化指標分子Fibronectin表現量顯著增加。同時,25 μM DEHP會增加AKT及Smad2/3之磷酸化,並抑制PPAR-α和PPAR-γ表現量。進一步利用AKT抑制劑-MK2206探究詳細機轉,發現合併使用MK2206與DEHP,上皮-間質轉換的指標蛋白(E-cadherin及Vimentin)與纖維化指標分子(Fibronectin),有顯著回復情形;且AKT下游蛋白NF-ĸB和GSK3磷酸化蛋白表現量也隨之改變。此外,研究也給予PPAR-γ促進劑- pioglitazone (PIO),結果顯示合併暴露PIO與DEHP時,PPAR-γ、上皮-間質轉換指標蛋白和纖維化指標分子的表現量無顯著變化。總結上述,DEHP可能透過AKT/NF-ĸB及AKT/GSK3訊息傳遞路徑誘發腎臟上皮細胞的上皮-間質轉換與纖維化發生。本研究僅確認DEHP可經AKT訊息傳遞路徑引發上皮-間質轉換及纖維化的發生,但未釐清PPAR-γ與上皮-間質轉換過程之詳細分子機轉,以及AKT與PPAR-γ是否相互調控,此部分仍需更多實驗探究討論。動物實驗方面,以單次腹腔注射葉酸(200 mg/kg.bw)誘導腎纖維化的疾病動物模式下,探討C57BL/6公鼠持續暴露DEHP (50 mg/kg.bw/day)六週是否會引起更強烈之腎纖維化。結果指出,與單獨處理葉酸組別比較,合併處理葉酸及DEHP組別之存活率達顯著下降,而腎臟組織切片染色實驗也顯示腎小管損傷及腎纖維化(以膠原蛋白沉澱程度評估)有顯著增加的趨勢,換而言之,結果持續暴露DEHP可能會加重腎功能損傷。但在相對腎臟重與腎損傷指標(BUN、Creatinine及Cystatin C)之實驗,合併處理葉酸及DEHP組別與單獨處理葉酸組別比較下,未達統計差異。總結本篇動物研究,實驗發現持續暴露DEHP可能會影響小鼠的腎功能,進而加劇腎纖維化之情形,但仍需更多實驗與證據直接證實DEHP與腎纖維化之關係。 | zh_TW |
dc.description.abstract | Di(2-ethylhexyl)phthalate (DEHP) is the major phthalate plasticizer for polyvinyl chloride. More than two million tons of DEHP were used each year worldwide. At present, DEHP has widely spread in our environment. Its potential environmental and health hazards cannot be ignored due to its low degradability. Recent studies suggest that DEHP has potential adverse effects on the liver, kidney, and reproductive organs, and causes carcinogenicity and developmental toxicity. Several studies in mice have reported dose- and time-dependent kidney lesions (ex: renal tubule injury) following exposure to DEHP. It may exacerbate chronic progressive nephropathy. The incidence of end-stage renal disease (ESRD) in Taiwan is highest in the world. In 2012, the cost of dialysis in ESRD patients was around one billion U.S. dollars, which accounted for 5.89% of the total medical expenditure of national health insurance. Those researches showed that ERSD is an important health issue in Taiwan. Tubulointerstitial fibrosis (TIF) is one of the major causes of ESRD, and tubular epithelial-to-mesenchymal transition (EMT) is recognized to play pivotal roles in the process of renal fibrosis. However, the mechanisms of nephrotoxicity induced by DEHP remain unclear.In this study, we investigated whether DEHP could induce renal fibrosis via EMT process in vitro and in vivo. After treatment with DEHP for 72h, we found that cell morphology was changed from flattened epithelial cell type to spindle-like shape under 25 μM DEHP treatment in rat renal proximal tubular cells (NRK-52E cells). Cell viability was decreased to 85.86 %. In cell cycle study, DEHP increased only 0.74 % cell apoptosis compared to control group but significantly enhanced cells which stayed in G2/M phase. These results indicated that 25 μM DEHP caused little cytotoxicity in NRK-52E cells, but induced G2/M cell cycle arrest. On the other hand, E-cadherin, a maker of epithelial cells was decreased by DEHP treatment. Vimentin、α-SMA and CTGF which are the markers of the mesenchymal phenotype were significantly increased. Furthermore, DEHP induced the protein expression of Fibronectin, a fibrosis marker. Moreover, phosphorylation of Akt and Smad 2/3 was significantly increased by DEHP. PPAR-α and PPAR-γ were decreased by DEHP treatment. Notably, treatment with MK2206 (an Akt inhibitor) significantly inhibited DEHP-induced phosphorylation of Akt and EMT. Further investigation revealed that MK2206 suppressed the expression of Akt downstream proteins (NF-ĸB and GSK3), but treatment with pioglitazone (a PPAR-γ agonist) did not reverse the expression of EMT biomarkers. Taken together, our results indicate that DEHP induce the EMT process through AKT signaling pathway and may lead to renal fibrosis in vitro. In this study we used male C57BL/6 mice to investigate the role of DEHP (50 mg/kg.bw/day) in renal fibrosis. After 4 weeks of DEHP exposure, renal fibrosis was induced by folic acid injection. The survival rate of DEHP exposure group was significantly decreased compared to vehicle group after renal fibrosis induction. The similar results were found in histological examination (H E stain and Masson's trichrome stain). Those results showed that the mice have worse renal function after DEHP treatment. The relative kidney weight and the values of blood urine nitrogen、creatinine and Cystatin C significantly increased in DEHP exposure group compared to vehicle group. However, there no significant differences between DEHP exposure group and vehicle group in kidney weight and biochemistry parameters after mice treated with folic acid. It is the first time that we found DEHP induced EMT and the expression of renal fibrosis marker through AKT pathway. We also found DEHP could aggravate folic acid-induced renal fibrosis in mice. However, we need more experiments to investigate the mechanisms of DEHP in renal fibrosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:35:30Z (GMT). No. of bitstreams: 1 ntu-104-R02447004-1.pdf: 5285461 bytes, checksum: 04ecc94520c7fc0a3818f59faa02a954 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書 i 誌謝 vi 摘要 vii Abstract ix 縮寫表 xi 第一章 1 第一章 緒論 2 1.1. 鄰苯二甲酸二(2-乙基己基)酯(di(2-ethylhexyl) phthalate, DEHP)之簡介 2 1.1.1. DEHP之使用與特性 2 1.1.2. DEHP的暴露途徑及代謝 3 1.2. DEHP之毒性效應 5 1.3. DEHP與腎纖維化之研究背景 6 1.4. 腎纖維化與上皮-間質轉換(epithelial-to-mesenchymal transition,簡稱EMT)之研究背景 7 1.4.1. EMT過程中的上皮細胞與間質細胞之指標蛋白 8 1.4.2. 轉型生長因子β (transforming growth factor β,簡稱TGF-β)對EMT影響 10 1.5. 研究動機 11 第二章 13 第二章 材料與方法 14 2.1. 細胞實驗 14 2.1.1. 細胞培養 14 2.1.2. 細胞存活率試驗(MTT Assay) 14 2.1.3. 細胞凋亡分析-流式細胞技術(flow cytometry) 15 2.1.4. 細胞週期分析-流式細胞技術(flow cytometry) 15 2.1.5. 蛋白質分析-西方墨點法(western blotting assay) 16 2.1.6. 免疫細胞化學染色(immunocytochemistry stain,簡稱ICC) 17 2.1.7. 即時聚合酶鏈式反應(real-time polymerase chain reaction) 17 2.1.8. 統計分析(Statistics) 18 2.2. 動物實驗 18 2.2.1. 動物飼養 18 2.2.2. 實驗設計與藥物處理方法 19 2.2.3. 血清中尿素氮(Blood urine nitrogen, BUN)、肌酐酸(Creatinine)與胱蛋白(Cystatin C)測定 19 2.2.4. 組織病理切片、染色及半定量評估 19 第三章 21 第三章 結果 22 3.1. DEHP降低大鼠近曲小管上皮細胞株NRK-52E的細胞存活率。 22 3.2. DEHP誘發NRK-52E細胞生長週期停滯及細胞型態改變。 23 3.2.1. DEHP對細胞週期的影響 23 3.2.2. DEHP對細胞型態的影響 23 3.3. 25 μM DEHP誘導NRK-52E細胞的上皮-間質轉換與纖維化的發生,可能是透過調控AKT、Smad2/3與PPAR蛋白導致。 24 3.3.1. DEHP導致EMT與纖維化的發生 24 3.3.2. 25 μM DEHP改變NRK-52E細胞內AKT磷酸化、Smad2/3磷酸化與PPAR蛋白表現量 25 3.4. DEHP經AKT/NF-ĸB與AKT/GSK3訊息傳遞路徑,進而誘導EMT與纖維化發生 25 3.4.1. 抑制AKT磷酸化可回復由DEHP誘發的上皮-間質轉換過程 25 3.4.2. DEHP經NF-ĸB與GSK3訊息傳遞路徑,進而誘導EMT與纖維化發生 26 3.5. DEHP無顯著誘導NRK-52E細胞之TGF-β1表現 27 3.6. PPAR-γ促進劑Pioglitazone無法抑制由DEHP誘發的上皮-間質轉換 28 3.7. 餵食DEHP合併腹腔注射葉酸導致小鼠存活率及體重顯著下降且相對腎臟重顯著增加 28 3.7.1. 在葉酸誘導小鼠腎纖維化的疾病動物模式下,合併餵食DEHP對小鼠存活率與體重之影響 28 3.7.2. 在葉酸誘導小鼠腎纖維化的疾病動物模式下,合併餵食DEHP對小鼠腎臟重之影響 29 3.8. 餵食DEHP合併腹腔注射葉酸導致小鼠BUN、Creatinine及Cystatin C顯著上升 29 3.9. 餵食DEHP合併腹腔注射葉酸加劇小鼠腎小管損傷及腎臟纖維化 30 第四章 32 第四章 討論 33 4.1. . DEHP經由AKT訊息傳遞路徑誘導EMT發生之機制探討 33 4.2. . DEHP 是否會透過誘導TGF-β,進而活化下游EMT過程之探討 34 4.3. . DEHP抑制PPAR蛋白表現之機制探討 35 4.4. . 以疾病動物模式觀察DEHP是否導致腎纖維化之探討 36 第五章 37 第五章 結論 38 第六章 參考文獻 39 第七章 圖表 48 【圖1】DEHP降低大鼠近曲小管上皮細胞株NRK-52E的細胞存活率 48 【圖2】DEHP導致NRK-52E的細胞型態轉變 49 【圖3】25 μM DEHP導致極少的NRK-52E細胞凋亡 50 【圖4】DEHP導致NRK-52E細胞其細胞週期停滯在G2/M期 51 【圖5】DEHP可誘導NRK-52E細胞的上皮-間質轉換過程 52 【圖6】DEHP誘導NRK-52E細胞改變上皮-間質轉換指標分子之表現量 53 【圖7】DEHP改變NRK-52E細胞AKT、Smad2/3磷酸化與PPAR蛋白表現量 54 【圖8】AKT抑制劑MK2206抑制由DEHP誘發的上皮-間質轉換過程 55 【圖9】MK2206回復由DEHP誘導上皮-間質轉換指標分子之表現量 56 【圖10】DEHP透過AKT影響其下游NF-ĸB與GSK3磷酸化蛋白表現量 57 【圖11】DEHP無顯著誘導NRK-52E細胞之TGF-β1表現 58 【圖12】PPAR-γ促進劑Pioglitazone無法抑制由DEHP誘發的上皮-間質轉換 60 【圖13】餵食DEHP合併腹腔注射葉酸導致小鼠存活率及體重顯著下降 61 【圖14】餵食DEHP合併腹腔注射葉酸之實驗小鼠腎臟重與腎功能指標 62 【圖15】合併給予葉酸與DEHP造成Cystatin C顯著增加 63 【圖16】合併給予葉酸與DEHP造成腎小管損傷顯著增加 64 【圖17】合併給予葉酸與DEHP造成腎纖維化程度增加 65 | |
dc.language.iso | zh-TW | |
dc.title | 以細胞及動物模式探討鄰苯二甲酸二(2-乙基己基)酯致腎臟纖維化之機制 | zh_TW |
dc.title | The mechanisms of di(2-ethylhexyl) phthalate-induced renal fibrosis in vitro and in vivo | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊榮森(Rong-Sen Yang),姜至剛(Chih-Kang Chiang),許美鈴(Meei-Ling Sheu) | |
dc.subject.keyword | 鄰苯二甲酸二(2-乙基己基)酯,上皮-間質轉換,腎纖維化, | zh_TW |
dc.subject.keyword | DEHP,EMT,AKT,renal fibrosis, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
Appears in Collections: | 毒理學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 5.16 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.