Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53982
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘
dc.contributor.authorChia-Lin Chenen
dc.contributor.author陳嘉臨zh_TW
dc.date.accessioned2021-06-16T02:35:28Z-
dc.date.available2020-08-05
dc.date.copyright2015-08-05
dc.date.issued2015
dc.date.submitted2015-07-27
dc.identifier.citation[1] P. Reynaert and M. Steyaert, RF Power Amplifiers for Mobile Communications, Springer, 2006, ch.1, 5.
[2] J. L. Dawson and T. H. Lee, Feedback Linearization of RF Power Amplifiers, Kluwer Academic Publishers, 2004, ch.1, 3.
[3] B. Kim, J. Kim, D. Kim, J. Son, Y. Cho, J. Kim, and B. Park, “Push the Envelope,” IEEE Microwave Magzine, vol. 14, no. 3, Apr. 2013, pp. 68-81.
[4] J. Liu, Y. Allasasmeh, S. Gregori, B. Leesti, and M. Snelgrove, “An Envelope Tracking H-Bridged Audio Amplifier with Improved Efficiency and THD Less than 0.1%,” IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2012, pp. 1-4.
[5] Z. Wang, Envelope Tracking Power Amplifiers for Wireless Communications, Artech House, 2014, ch.1, 3, 4, 6.
[6] A. Grebennikov, RF and Microwave Power Amplifier Design, Mcgraw Hill, 2005, ch.9.
[7] S. C. Cripps, RF Power Amplifiers for Wireless Communications, second edition, Artech House, 2006, ch.10.
[8] M. Hassan, L. E. Larson, V. W. Leung, and P. M. Asbeck, “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 5, May 2012, pp. 1185-1198.
[9] J. Sebastian, P. Fernandez-Miaja, A. Rodriguez, and M. Rodriguez, “Analysis and Design of the Output Filter for Buck Envelope Amplifiers,” IEEE Transactions on Power Electronics, vol. 29, no. 1, Jan. 2014, pp. 213-233.
[10] P. F. Miaja, A. Rodriguez, J. Sebastian, and M. Rodriguez, “Multiple-input buck converter optimized for accurate envelope tracking in RF power amplifiers,” IEEE APEC, 2010, pp. 715-722.
[11] D. Cucak, M. Vasić, O. Garcia, J. A. Oliver, P. Alou, and J. A. Cobos, “Optimum Design of an Envelope Tracking Buck Converter for RFPA using GaN HEMTs,” IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 1210-1216.
[12] C. Hsia, D. F. Kimball, and P. M. Asbeck, “Effect of maximum power supply voltage on envelope tracking power amplifiers using GaN HEMTs,” IEEE Power Amplifiers for Wireless and Radio Applications (PAWR), 2011, pp. 69-72.
[13] S. Shinjo, Y. P. Hong, H. Gheidi, D. F. Kimball, and P. M. Asbeck, “High speed, high analog bandwidth buck converter using GaN HEMTs for envelope tracking power amplifier applications,” IEEE Wireless Sensors and Sensor Networks (WiSNet), 2013, pp. 13-15.
[14] M. C. W. Hoyerby and M. A. E. Andersen, “Ultrafast Tracking Power Supply with Fourth-Order Output Filter and Fixed-Frequency Hysteretic Control,” IEEE Transactions on Power Electronics, vol. 23, no. 5, 2008, pp. 2387-2398.
[15] M. Rodriguez, P. F. Miaja, A. Rodriguez, and J. Sebastian, “A Multiple-Input Digitally Controlled Buck Converter for Envelope Tracking Applications in Radiofrequency Power Amplifiers,” IEEE Transactions on Power Electronics, vol. 25, no. 2, Feb. 2014, pp. 369-381.
[16] P. F. Miaja, A. Rodriguez, J. Sebastian, and M. Rodriguez, “Enhancements of the Multiple Input Buck Converter used for Envelope Tracking Applications by Improved Output Filter Design and Multiphase Operation,” IEEE ECCE, 2012, pp. 1841-1848.
[17] M. Rodriguez, P. F. Miaja, A. Rodriguez, and J. Sebastian, “Multilevel converter for Envelope Tracking in RF power amplifiers,” IEEE ECCE, 2009, pp. 503-510.
[18] V. Yousefzadeh, E. Alarcon, and D. Maksimovic, “Three-Level Buck Converter for Envelope Tracking Applications,” IEEE Transactions on Power Electronics, vol. 21, no. 2, Mar. 2006, pp. 549-552.
[19] J. Sebastian, P. Fernandez-Miaja, F. J. Ortega-Gonzalez, M. Patino, and M. Rodriguez, “Design of a Two-Phase Buck Converter With Fourth-Order Output Filter for Envelope Amplifiers of Limited Bandwidth,” IEEE Transactions on Power Electronics, vol. 29, no. 11, Nov. 2014, pp. 5933-5948.
[20] Y. Zhang, M. Rodriguez, and D. Maksimovic, “Output Filter Design in High-Efficiency Wide-Bandwidth Multi-Phase Buck Envelope Amplifiers,” IEEE APEC, 2015, pp. 2026-2032.
[21] P. F. Miaja, A. Rodriguez, and J. Sebastian, “Buck derived converters based on gallium nitride devices for Envelope Tracking applications,” IEEE ECCE, 2013, pp. 464-471.
[22] G. B. Yundt, “Series- or Parallel-Connected Composite Amplifiers,” IEEE Transactions on Power Electronics, vol. PE-1, no. 1, Jan. 1986, pp. 48-54.
[23] R. C. Beltrame, M. L. da Silva Martins, C. Rech, and H. L. Hey, “Hybrid Power Amplifiers – A Review,” IEEE Brazilian Power Electronics Conference, Congresso Brasileito de Eletrônica de Potência (COBEP), 2011, pp.189-195.
[24] M. Vasic, O. Garcia, J. A. Oliver, P. Alou, D. Diaz, and J. A. Cobos, “Multilevel Power Supply for High Efficiency RF Amplifiers,” IEEE Transactions on Power Electronics, vol. 25, no. 4, Nov. 2010, pp. 1078-1089.
[25] H. Xi, Q. Jin, and X. Ruan, “Feed-Forward Scheme Considering Bandwidth Limitation of Operational Amplifiers for Envelope Tracking Power Supply Using Series-Connected Composite Configuration,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, Sep. 2013, pp. 3915-3926.
[26] P. M. Cheng, M. Vasić, O. Garcia, J. A. Oliver, P. Alou, and J. A. Cobos, “Multiphase buck converter with minimum time control strategy for RF envelope modulation,” IEEE APEC, 2011, pp. 904-909.
[27] P. M. Cheng, M. Vasić, O. Garcia, J. A. Oliver, P. Alou, and J. A. Cobos, “Design of envelope amplifier based on interleaved multiphase buck converter with minimum time control for RF application,” IEEE ECCE, 2011, pp. 1279-1283.
[28] R. Bondade, Y. Zhang, and D. Ma, “A Linear-Assisted DC-DC Hybrid Power Converter for Envelope Tracking RF Power Amplifiers,” IEEE ECCE, 2014, pp. 5769-5773.
[29] D. Kang, D. Kim, J. Choi, J. Kim, Y. Cho, and B. Kim, “A Multimode/Multiband Power Amplifier With a Boosted Supply Modulator,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 10, Oct. 2010, pp. 2598-2608.
[30] H. Meng, “Analysis and Design Consideration of Hybrid Supply Modulator for Envelope Tracking Power Amplifier,” IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 151-154, 2014.
[31] H. Xi, Q. Jin, X. Ruan, and X. Xiong, “Full Feedforward of the Output Voltage to Improve Efficiency for Envelope-Tracking Power Supply Using Switch-Linear Hybrid Configuration,” IEEE Transactions on Power Electronics, vol. 28, no. 1, Jan. 2013, pp. 451-456.
[32] D. Li, Y. Zhang, M. Rodraiguez, and D. Maksimovic, “Band Separation in Linear-Assisted Switching Power Amplifiers for Accurate Wide-Bandwidth Envelope Tracking,” IEEE ECCE, 2014, pp. 1113-1118.
[33] P. F. Miaja, M. Rodriguez, A. Rodriguez, and J. Sebastian, “A linear assisted DC/DC converter for Envelope Tracking and Envelope Elimination and Restoration applications,” IEEE ECCE, 2010, pp. 3825-3832.
[34] Q. Jin and X. Ruan, “Switch-Linear Hybrid Envelope-Tracking Power Supply with Multilevel Structure,” IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON), 2013, pp. 1325-1330.
[35] P. Y. Wu and P. K. T. Mok, “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers With 9% Efficiency Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, Dec. 2010, pp. 2543-2556.
[36] A. Lidow, J. Strydom, M. de Rooij, and D. Reusch, GaN Transistors for Efficient Power Conversion, second edition, John Wiley & Sons, 2015, ch.1,2,8.
[37] L. G. Heller, W. H. Chang, and A. W. Lo, “A Model of Charge Transfer in Bucket Brigade and Charge-coupled Devices,” IBM Journal of Research and Development, vol. 16, no. 2, 1972, pp. 184-187.
[38] E. R. Fossum, “Wire Transfer of Charge Packets Using a CCD-BBD Structure for Charge-Domain Signal Processing,” IEEE Transactions on Electron Devices, vol. 38, no. 2, Feb 1991, pp. 291-298.
[39] Y. Mo, T. Tanaka, S. Arita, A. Tsuchitani, K. Inoue, and Y. Suzuki, “Pipelined Delay-Sum Architecture Based on Bucket-Brigade Devices for On-Chip Ultrasound Beamforming,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, Oct. 2003, pp. 1754-1757.
[40] S. Smith, Microelectronic Circuits, sixth edition, Oxford, 2011, ch.11.
[41] K. Nagaraj, “Switched-capacitor delay circuit that is insensitive to capacitor mismatch and stray capacitance,” Institution of Engineering and Technology (IET) Journals & Magazines, Electronics Letters, vol. 20, no. 16, Aug. 1984, pp. 663-664.
[42] S. K. Park, H. J. Choi, and Y. C. Jeong, “Microwave Group Delay Time Adjuster Using Parallel Resonator,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, 2007, pp. 109-111.
[43] G. Chaudhary, H. Choi, Y. Jeong, J. Lim, and C. D. Kim, “Design of Group Delay Time Controller Based on a Reflective Parallel Resonator,” Electronics and Telecommunications Research Institute (ETRI) Journal, vol. 34, no. 2, Apr. 2012, pp. 210-215.
[44] F. Marvasti, Nonuniform Sampling Theory and Practice, Kluwer Academic Publishers, 2001, ch.20.
[45] U. Menzi and G. S. Moschytz, “Adaptive Switched-Capacitor Filters Based on the LMS Algorithm,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 12, Dec. 1993, pp. 929-942.
[46] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, “Design of Wide-Bandwidth Envelope-Tracking Power Amplifiers for OFDM Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, Apr. 2005, pp. 1244-1255.
[47] J. Kim, D. Kim, Y. Cho, D. Kang, B. Park, K. Moon, and B. Kim, “Analysis of Envelope-Tracking Power Amplifier Using Mathematical Modeling,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 6, June 2014, pp. 1352-1362.
[48] J. Jeong, G. Chaudhary, and Y. Jeong, “Time Mismatch Effect in Linearity of Hybrid Envelope Tracking Power Amplifier,” IEEE Microwave and Wireless Components Letters, vol. PP, no. 99, 2015, pp. 1-3.
[49] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications, and Design, third edition, John Wiley & Sons, 2003, ch.7, 10.
[50] 梁適安,「交換式電源供給器之理論與實務設計」,全華,2011,第二、六章。
[51] 陳昆宏,「自主分散式最大功率追蹤之太陽能發電系統研製」,國立臺灣大學電機資訊學院電機工程學系碩士論文,民國102年,第五章。
[52] C. K. Alexander, and M. N. O. Sadiku, Fundamental of Electric Circuits, fourth edition, Mcgraw Hill, 2009, ch.5, 9.
[53] Development Board EPC9002 Quick Start Guide, “100 V Half-Bridge with Gate Drive, Using EPC2001,” Efficient Power Conversion, 2013.
[54] LM5113 datasheet, “5A, 100V Half-Bridge Gate Driver for Enhancement Mode GaN FETs,” Texas Instrument, Jan. 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53982-
dc.description.abstract本論文之研究目的為封包追蹤電源供應器(Envelope Tracking Power Supply,ETPS)之研製,使用封包追蹤技術產生變動電源,取代傳統定電源供給之線性功率放大器以提升其效率。在封包追蹤功率放大器系統中,ETPS之輸出封包與功率放大器輸出之放大訊號,此兩電壓之不同步使功率放大器無法操作於最高效率。一般解決方式是將傳輸之原始訊號經延遲處理得延遲訊號,再使該兩電壓同步。但此方式使原始訊號需經訊號處理,所得之延遲訊號與原始訊號會產生差異。因此,本論文提出不需處理原始訊號之領前封包訊號法,利用簡易實現之相位領前電路,使ETPS之輸出封包盡量與PA之放大訊號兩電壓同步。本論文中,亦對ETPS造成輸出封包與原始訊號之封包訊號間之相位差進行數學分析與電路模擬,探討造成此相位差的原因。最後以操作於1MHz切換頻率,25W之降壓型ETPS硬體電路實驗結果驗證ETPS及領前封包訊號法之可行性。zh_TW
dc.description.abstractIn this thesis, an envelope tracking power supply (ETPS) using envelope tracking tecknique is proposed to improve the efficiency of a linear power amplifier by producing a changeable voltage supply instead of the conventional constant voltage supply. In an envelope tracking power amplifier system, the nonsynchronization of the two voltages, envelope output produced by the ETPS and amplified signal produced by the power amplifier, causing the problem of degrading the power amplifier efficiency. Delaying the transmitted original signal for a delay time to synchronize two voltages remains the general solution. However, the delayed signal may not be totally identical to the original signal due to the signal processing. Therefore, a solution which the original signal without being processed named leading envelope signal scheme with a simple implemented phase lead circuit to synchronize two voltages is proposed in this thesis. In addition, mathematical analysis and circuit simulations are carried out to discuss the factors of the phase difference caused by the proposed ETPS between the envelope output and the envelope signal of the original signal. Finally, the hardware implementation of a 25W Buck type ETPS operating at 1MHz switching frequency is proposed to verify the feasibility of the ETPS and leading envelope signal scheme.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:35:28Z (GMT). No. of bitstreams: 1
ntu-104-R01921102-1.pdf: 3659852 bytes, checksum: 0cac6aeec76185e5b653dddb4322105a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 5
1-3 論文大綱 7
第二章 封包追蹤電源供應器 8
2-1 電路架構概念 8
2-1.1 線性式ETPS 8
2-1.2 切換式ETPS 9
2-1.3 切換-線性複合式ETPS 13
2-1.4 電路架構小結 17
2-2 操作原理 18
2-3 輸出封包與封包訊號之相位關係 21
2-3.1 LC濾波器之影響 23
2-3.2 微控制器之影響 29
2-3.3 電壓回授電路濾波電容之影響 31
2-3.4 相位關係小結 34
2-4 輸出封包與封包訊號之同步方法 34
2-4.1 延遲原始訊號法 35
2-4.2 領前封包訊號法 36
第三章 電路軟硬體介紹與設計 39
3-1 功率級元件設計 41
3-1.1 功率開關選擇 41
3-1.2 LC濾波器 42
3-2 控制級電路設計 47
3-2.1 微控制器介紹 47
3-2.2 電壓回授電路 48
3-2.3 相位領前電路 49
3-2.4 邏輯閘與延遲時間電路 55
3-2.5 閘極驅動電路 56
3-3 微控制器程式流程 57
第四章 電腦模擬與硬體電路實測 61
4-1 電腦模擬 61
4-1.1 定電壓輸出 63
4-1.2 未加相位領前電路之弦波電壓輸出 64
4-1.3 加入相位領前電路之弦波電壓輸出 68
4-1.4 電腦模擬小結 71
4-2 硬體電路實測結果 72
4-2.1 定電壓輸出 73
4-2.2 未加相位領前電路之弦波電壓輸出 74
4-2.3 加入相位領前電路之弦波電壓輸出 78
4-2.4 實測結果小結 81
第五章 結論與未來研究方向 87
5-1 結論 87
5-2 未來研究方向 88
參考文獻 89
dc.language.isozh-TW
dc.title封包追蹤電源供應器之研製zh_TW
dc.titleDesign and Implementation of Envelope Tracking Power Supplyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳德玉,邱煌仁,陳景然
dc.subject.keyword封包追蹤,封包追蹤電源供應器,延遲線,相位差,zh_TW
dc.subject.keywordenvelope tracking,envelope tracking power supply,delay line,phase difference,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2015-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
3.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved