請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53981
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳耀銘 | |
dc.contributor.author | Ming-Hsueh Lee | en |
dc.contributor.author | 李明學 | zh_TW |
dc.date.accessioned | 2021-06-16T02:35:26Z | - |
dc.date.available | 2020-08-03 | |
dc.date.copyright | 2015-08-03 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-27 | |
dc.identifier.citation | [1]. B. K. Bose, “Global Energy Scenario and Impact of Power Electronics in 21st Century,” IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2638, 2651, July 2013.
[2]. S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy Storage Systems for Transport and Grid Applications,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3881, 3895, Dec. 2010. [3]. J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, Ma. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002, 1016, June 2006. [4]. J. M. Maza-Ortega, A. Gómez-Expósito, M. Barragán-Villarejo, E. Romero-Ramos, and A. Marano-Marcolini, “Voltage source converter-based topologies to further integrate renewable energy sources in distribution systems,” IET Renewable Power Generation, vol. 6, no. 6, pp. 435, 445, November 2012. [5]. G. Velasco-Quesada, F. Guinjoan-Gispert, R. Piqué-López, M. Román-Lumbreras, and A. Conesa-Roca, “Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4319-4331, Nov. 2009. [6]. C. Meza, J. J. Negroni, D. Biel, and F. Guinjoan, “Energy-balance modeling and discrete control for single-phase grid-connected PV central inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2734-2743, Jul. 2008. [7]. H. Keyhani and H. A. Toliyat, “Single-stage multistring PV inverter with an isolated high-Frequency link and soft-switching operation,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 3919-3929, Aug. 2014. [8]. N. A. Rahim and J. Selvaraj, “Multistring five-level inverter with novel PWM control scheme for PV application,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2111-2123, Jun. 2010. [9]. C. A. Ramos-Paja, G. Spagnuolo, G. Petrone, M. Vitelli, and J. D. Bastidas, “A multivariable MPPT algorithm for granular control of photovoltaic systems,” IEEE International Symposium on Industrial Electronics (ISIE), 2010, pp. 3433-3437. [10]. A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, “Cascaded DC–DC converter photovoltaic systems: power optimization issues,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 403-411, Feb. 2011. [11]. J. Huusari and T. Suntio, “Interfacing constraints of distributed maximum power point tracking converters in photovoltaic applications,” IEEE International Power Electronics and Motion Control Conference (EPE/PEMC), 2012, pp. DS3d. 1-1 - DS3d. 1-7. [12]. Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1320-1333, May 2008. [13]. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IET Transactions on Industry Applications, vol. 41, no. 5, pp. 1292-1306, Sep.-Oct. 2005. [14]. M. Bouzguenda, A. Gastli, A. H. Al Badi, and T. Salmi, “Solar photovoltaic inverter requirements for smart grid applications,” IEEE PES Conference on Innovative Smart Grid Technologies - Middle East (ISGT Middle East), 2011, pp. 1-5. [15]. D. M. Scholten, N. Ertugrul, and W. L. Soong, “Micro-inverters in small scale PV systems: A review and future directions,” 2013 Australasian Universities Power Engineering Conference (AUPEC), pp. 1, 6, Sept. 29 2013-Oct. 3 2013. [16]. T. H. Lobaru and K. M. Salim, “Design and implementation of a micro-inverter for single PV panel based solar home system,” 2013 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1, 5, 17-18 May 2013. [17]. R. Attanasio, F. Gennaro, and G. Scuderi, “A grid tie micro inverter with reactive power control capability,” 2013 AEIT Annual Conference, pp. 1, 6, 3-5 Oct. 2013. [18]. H. C. Chiang and H. Y. Tsai, “Design and implementation of a grid-tied wind power micro-inverter,” IET Renewable Power Generation, vol. 7, no. 5, pp. 493, 503, Sept. 2013. [19]. S. Zengin and M. Boztepe, “Evaluation of two-stage soft-switched flyback micro-inverter for photovoltaic applications,” 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), pp. 92, 96, 28-30 Nov. 2013. [20]. S. Essakiappan, H. S. Krishnamoorthy, J. Ramos-Ruiz, P. Enjeti, M. Arifujjaman, and T. Singh, “Modeling and analysis of a micro-inverter configuration for high power phosphoric acid fuel cell application,” 2013 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1110, 1117, 15-19 Sept. 2013. [21]. R. Mechouma, B. Azoui, and M. Chaabane, “Three-phase grid connected inverter for photovoltaic systems, a review,” 2012 First International Conference on Renewable Energies and Vehicular Technology (REVET), pp. 37, 42, 26-28 March 2012. [22]. J. De Kooning, B. Meersman, T. Vandoorn, B. Renders, and L. Vandevelde, “Comparison of three-phase four-wire converters for distributed generation,” 2010 45th International Universities Power Engineering Conference (UPEC), pp. 1, 6, Aug. 31 2010-Sept. 3 2010. [23]. D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. on Ind. Appl., vol. IA-21, no. 4, 1985, pp. 562-570. [24]. Y. Zhenyu, A. Mohammed, and I. Panahi, “A review of three PWM techniques,” 1997. Proceedings of the 1997 American Control Conference, vol. 1, pp. 257, 261 vol. 1, 4-6 Jun 1997. [25]. M. D. Bellar, T. S. Wu, A. Tchamdjou, J. Mahdavi, and M. Ehsani, “A review of soft-switched DC-AC converters,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 847, 860, July-Aug. 1998. [26]. F. Z. Peng, “Z-source inverter,” 2002. 37th IAS Annual Meeting. Conference Record of the Industry Applications Conference, vol. 2, pp. 775, 781, Oct. 2002. [27]. X. P. Fang, J. M. Cui, J. Liu, and M. Y. Cao, “Detail research on the traditional inverter and Z-source inverter,” 2011 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 318, 321, 14-16 Dec. 2011. [28]. M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converter: a Survey, ” IEEE Trans. on Ind. Electron., vol. 45, no. 5, 1998, pp. 691-703. [29]. N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, 3rd edition. John Wiley and Sons Inc., 2003. [30]. Y.-M. Chen, K.-Y. Liu, S.-K. Chiang, and Y.-R. Chang, “Bi-directional grid-tied inverter with predictive current control,” IEEE ECCE, 2009, pp. 916-919. [31]. D. Zhang, Q. Zhang, H. Hu, A. Grishina, J. Shen, and I. Batarseh, “High efficiency current mode control for three-phase micro-inverters,” 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 892, 897, 5-9 Feb. 2012. [32]. A. Amirahmadi, H. Hu, A. Grishina, F. Chen, J. Shen, and I. Batarseh, “Hybrid control of BCM soft-switching three phase micro-inverter,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4690, 4695, 15-20 Sept. 2012. [33]. Q. Zhang, H. Hu, D. Zhang, X. Fang, Z. J. Shen, and I. Bartarseh, “A Controlled-Type ZVS Technique Without Auxiliary Components for the Low Power DC/AC Inverter,” IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3287, 3296, July 2013. [34]. A. Amirahmadi, H. Hu, A. Grishina, Q. Zhang, L. Chen, U. Somani, and I. Batarseh, “Hybrid ZVS BCM Current Controlled Three-Phase Microinverter,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2124, 2134, April 2014. [35]. A. Amirahmadi, H. Hu, A. Grishina, L. Chen, J. Shen, and I. Batarseh, “Improving output current distortion in hybrid BCM current controlled three-phase micro-inverter,” 2013 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1319, 1323, 15-19 Sept. 2013. [36]. Y. Chen and F. Liu, “Design and control for three-phase grid-connected photovoltaic inverter with LCL filter,” IEEE Circuits and Systems International Conference on Testing and Diagnosis (ICTD), 2009, pp. 1-4. [37]. B. Liu and B. M. Song, “Modeling and analysis of an LCL filter for grid-connected inverters in wind power generation systems,” IEEE Power and Energy Society General Meeting, 2011, pp. 1-6. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53981 | - |
dc.description.abstract | 本論文旨在研製一組具磁滯電流控制之三相四線式換流器以應用於太陽能發電系統。三相四線式換流器輸入端具有兩顆串聯的直流鏈電容,當兩顆電容電壓出現不平衡時,將導致電路操作不穩定。因此本論文根據直流鏈電容電壓與中性線電流之關係,提出控制方法,藉由偵測直流鏈電容電壓之變化產生中性線電流訊號,以調節磁滯電流區間的偏移量,避免電容電壓偏移,達成電容電壓平衡之目的。此外,由於三相四線式換流器具有較多開關,功率開關切換時造成的功率損失,將造成轉換效率降低。因此為了降低功率開關的切換損失,本論文將控制電感電流使其在每個切換週期皆能雙向流動,達成開關零電壓切換,以提升轉換效率。最後,以電腦模擬及硬體電路實驗結果驗證本論文所研製具磁滯電流控制之三相四線式換流器可行性與電路性能。 | zh_TW |
dc.description.abstract | A three-phase four-wire inverter with hysteresis current control for the photovoltaic (PV) system application is proposed in this thesis. There are usually two series-connected dc-link capacitors in the input side of a three-phase four-wire inverter. Unstable operation may result if the two capacitor voltages are different. In this thesis, a control method is developed according to the relationship between the dc-link capacitor voltage and the neutral wire current. By detecting the dc-link capacitor voltage, the neutral wire reference current signal can be generated to adjust the offset of hysteresis current band, so the capacitor voltage shifting and unstable operation can be avoided. On the other hand, there are many switches in the three-phase four-wire inverter and their switching losses dominate the inverter’s efficiency. In this thesis, the zero voltage switching operation is achieved by producing the bi-directional inductor current so that the switching loss can be reduced. Finally, simulation and hardware implementation results verify the feasibility and performance of the proposed three-phase four-wire inverter with hysteresis current control. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:35:26Z (GMT). No. of bitstreams: 1 ntu-104-R02921023-1.pdf: 2586595 bytes, checksum: 9489eccd558ab0375090c08bf69a4ae5 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 論文大綱 5 第二章 三相換流器系統簡介 7 2.1 三相換流器電力級架構 8 2.1.1 三相三線式換流器 9 2.1.2 三相四線式換流器 9 2.1.3 三相四臂式換流器 10 2.2 三相換流器之電流控制法則 10 2.2.1 磁滯電流控制 11 2.2.2 正弦脈寬調變電流控制 12 2.2.3 預測式電流控制 13 2.2.4 空間向量調變電流控制 14 第三章 三相換流器之軟切換設計介紹 17 3.1 負載諧振型 18 3.1.1 串聯式諧振換流器 18 3.1.2 並聯式諧振換流器 19 3.2 暫態諧振型 21 3.2.1 準諧振型換流器 21 3.2.2 具緩衝器型換流器 24 3.2.3 軟性暫態調變型換流器 25 3.3 鏈區諧振型 28 3.3.1 交流鏈諧振型換流器 28 3.3.2 直流鏈諧振型換流器 29 第四章 軟硬體電路設計 31 4.1 電路操作模式 32 4.2 電流控制策略 37 4.2.1 磁滯電流區間設計 37 4.2.2 直流鏈電容電壓調節 40 4.3 功率級元件設計 42 4.3.1 LCL濾波器Lr 42 4.3.2 LCL濾波器Crf、Lrf 44 4.4 控制級硬體電路 45 4.4.1 隔離型功率開關驅動電路 46 4.4.2 電感電流偵測電路 47 4.4.3 磁滯電流比較電路 47 4.4.4 直流鏈電容電壓偵測電路 49 4.4.5 微控制器程式流程 49 第五章 電腦模擬與實作驗證 54 5.1 電腦模擬結果 54 5.1.1 直流鏈電容電壓控制 55 5.1.2 開關之零電壓導通 58 5.2 硬體電路實測 62 第六章 結論與未來發展 69 6.1 結論 69 6.2 未來研究方向 70 參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | 具磁滯電流控制之三相換流器研製 | zh_TW |
dc.title | Design and Implementation of a Three-Phase Inverter with Hysteresis Current Control | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳德玉,邱煌仁,陳景然 | |
dc.subject.keyword | 三相換流器,磁滯電流控制,電容電壓不平衡,零電壓切換, | zh_TW |
dc.subject.keyword | three phase inverter,hysteresis current control,capacitor voltage unbalance,zero voltage switching, | en |
dc.relation.page | 75 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-27 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。