Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53975
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢宗良
dc.contributor.authorWen-Di Leeen
dc.contributor.author李文弟zh_TW
dc.date.accessioned2021-06-16T02:35:14Z-
dc.date.available2020-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-07-27
dc.identifier.citationAlagappan, D., Lazzarino, D.A., Felling, R.J., Balan, M., Kotenko, S.V., and Levison, S.W. (2009). Brain injury expands the numbers of neural stem cells and progenitors in the SVZ by enhancing their responsiveness to EGF. ASN Neuro 1, 95-111.
Alvarez-Buylla, A. (2002). Neurogenesis in adult subventricular zone. The Journal of Neuroscience 22, 629-634.
Alvarez-Palazuelos, L.E., Robles-Cervantes, M.S., Castillo-Velazquez, G., Rivas-Souza, M., Guzman-Muniz, J., Moy-Lopez, N., Gonzalez-Castaneda, R.E., Luquin, S., and Gonzalez-Perez, O. (2011). Regulation of neural stem cell in the human SVZ by trophic and morphogenic factors. Current Signal Transduction Therapy 6, 320-326.
Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine 8, 963-970.
Bath, K.G., Mandairon, N., Jing, D., Rajagopal, R., Kapoor, R., Chen, Z.Y., Khan, T., Proenca, C.C., Kraemer, R., Cleland, T.A., Hempstead BL, Chao M.V., Lee F.S. (2008). Variant brain-derived neurotrophic factor (Val66Met) alters adult olfactory bulb neurogenesis and spontaneous olfactory discrimination. The Journal of Neuroscience 28, 2383-2393.
Bath, K.G., and Lee, F.S. (2010). Neurotrophic factor control of adult SVZ neurogenesis. Developmental Neurobiology 70, 339-349.
Bellenchi, G.C., Volpicelli, F., Piscopo, V., Perrone-Capano, C., and di Porzio, U. (2013). Adult neural stem cells: an endogenous tool to repair brain injury? Journal of Neurochemistry 124, 159-167.
Brisman, J.L., Song, J.K., and Newell, D.W. (2006). Cerebral Aneurysms. The New England Journal of Medicine 355, 928-939.
Chen, A., Xiong, L.J., Tong, Y., and Mao, M. (2013). The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomedical Reports 1, 167-176.
Chiaramello, S., Dalmasso, G., Bezin, L., Marcel, D., Jourdan, F., Peretto, P., Fasolo, A., and De Marchis, S. (2007). BDNF/ TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. The European Journal of Neuroscience 26, 1780-1790.
Chiaretti, A., Piastra, M., Polidori, G., Di Rocco, C., Caresta, E., Antonelli, A., Amendola, T., and Aloe, L. (2003). Correlation between neurotrophic factor expression and outcome of children with severe traumatic brain injury. Intensive Care Medicine 29, 1329-1338.
Christie, K.J., and Turnley, A.M. (2012). Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Frontiers in Cellular Neuroscience 6, 70.
Crowley, R.W., Medel, R., Dumont, A.S., Ilodigwe, D., Kassell, N.F., Mayer, S.A., Ruefenacht, D., Schmiedek, P., Weidauer, S., Pasqualin, A., and Macdonald, R.L. (2011). Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke 42, 919-923.
Das, S. and Basu, A. (2008). Inflammation: A new candidate in modulating adult neurogenesis. Journal of Neuroscience Research 86, 1199-1208.
Deierborg, T., Roybon, L., Inacio, A.R., Pesic, J., and Brundin, P. (2010). Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes. Neuroscience 171, 1386-1396.
Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics and Development 13, 543-550.
Dougherty, K.D., Dreyfus, C.F., and Black, I.B. (2000). Brain-Derived Neurotrophic Factor in Astrocytes, Oligodendrocytes, and Microglia/Macrophages after Spinal Cord Injury. Neurobiology of Disease 7, 574-585.
Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2009). Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021-1029.
Falcao, A.M., Marques, F., Novais, A., Sousa, N., Palha, J.A., and Sousa, J.C. (2012). The path from the choroid plexus to the subventricular zone: go with the flow! Frontiers in Cellular Neuroscience 6, 1-8.
Fiore, M., Triaca, V., Amendola, T., Tirassa, P., and Aloe, L. (2002). Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiology and Behavior 77, 437-443.
Fulmer, C.G., VonDran, M.W., Stillman, A.A., Huang, Y., Hempstead, B.L., Dreyfus, C.F. (2014) Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. The Journal of Neuroscience 34, 8186-8196.
Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433-1438.
Hanisch, U.K. (2002). Microglia as a source and target of cytokines. Glia 40, 140-155.
Hanisch, U.K., and Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience 10, 1387-1394.
Hauwel, M., Furon, E., Canova, C., Griffiths, M., Neal, J., and Gasque, P. (2005) Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, 'protective' glial stem cells and stromal ependymal cells. Brain Research Reviews 48, 220-233.
Hayman, L.A., Pagani, J.J., Kirkpatrick, J.B., and Hinck, V.C. (1989). Pathophysiology of acute intracerebral and subarachnoid hemorrhage. American Journal of Roentgenology 153, 135-139.
Jin, K., Minami, M., Lan, J.Q., Mao, X.O., Batteur, S., Simon, R.P., and Greenberg, D.A. (2001). Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proceedings of the National Academy of Sciences of the United States of America 98, 4710-4715.
Jin, K., Wang, X., Xie, L., Mao, X.O., and Greenberg, D.A. (2010). Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proceedings of the National Academy of Sciences of the United States of America 107, 7993-7998.
Kernie, S.G., Erwin, T.M., and Parada, L.F. (2001). Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. Journal of Neuroscience Research 66, 317-326.
Kettenmann, H., Hanisch, U.K., Noda, M., and Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews 91, 461-553.
Kirschenbaum, B., and Goldman, S.A. (1995). Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proceedings of the National Academy of Sciences of the United States of America 92, 210-214.
Lewén, A., Matz, P., and Chan, P.H. (2000). Free radical pathways in CNS injury. Journal of Neurotrauma 17, 871-890.
Li, L., Harms, K.M., Ventura, P.B., Lagace, D.C., Eisch, A.J., and Cunningham, L.A. (2010). Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia 58, 1610-1619.
Macdonald, R.L., Kassell, N.F., Mayer, S., Ruefenacht, D., Schmiedek, P., Weidauer, S., Frey, A., Roux, S., and Pasqualin, A. (2008). Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39, 3015-3021.
Mayer, S.A., Kreiter, K.T., Copeland, D., Bernardini, G.L., Bates, J.E., Peery, S., Claassen, J., Du, Y.E., and Connolly, E.S.J. (2002). Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology 59, 1750-1758.
Mino, M., Kamii, H., Fujimura, M., Kondo, T., Takasawa, S., Okamoto, H., and Yoshimoto, T. (2003). Temporal changes of neurogenesis in the mouse hippocampus after experimental subarachnoid hemorrhage. Neurological Research 25, 839-845.
Monje, M.L., Toda, H., and Palmer, T.D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760-1765.
Moreno-Lopez, B., Romero-Grimaldi, C., Noval, J.A., Murillo-Carretero, M., Matarredona, E.R., and Estrada, C. (2004). Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. The Journal of Neuroscience 24, 85-95.
Moussouttas, M., Lai, E.W., Huynh, T.T., James, J., Stocks-Dietz, C., Dombrowski, K., Khoury, J., and Pacak, K. (2014). Association between acute sympathetic response, early onset vasospasm, and delayed vasospasm following spontaneous subarachnoid hemorrhage. Journal of Clinical Neuroscience 21, 256-262.
Murakami, K., Koide, M., Dumont, T.M., Russell, S.R., Tranmer, B.I., and Wellman, G.C. (2011). Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Translational Stroke Research 2, 72-79.
O'Keeffe, G.C., Tyers, P., Aarsland, D., Dalley, J.W., Barker, R.A., and Caldwell, M.A. (2009). Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proceedings of the National Academy of Sciences of the United States of America 106, 8754-8759.
Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N., and Ferriero, D.M. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Annals of Neurology 52, 802-813.
Patterson, S.L., Grady, M.S., and Bothwell, M. (1993). Nerve growth factor and a fibroblast growth factor-like neurotrophic activity in cerebrospinal fluid of brain injured human patients. Brain Research 605, 43-49.
Ransohoff, R.M., and Perry, V.H. (2009). Microglial physiology: unique stimuli, specialized responses. Annual Review of Immunology 27, 119-145.
Redzic, Z.B., Preston, J.E., Duncan, J.A., Adam, and Chodobski, A., Szmydynger‐Chodobska, J. (2005). The Choroid Plexus‐Cerebrospinal Fluid System: From Development to Aging. Current Topics in Developmental Biology 71, 1-52.
Robel, S., Berninger, B., and Gotz, M. (2011). The stem cell potential of glia: lessons from reactive gliosis. Nature Reviews Neuroscience 12, 88-104.
Saha, R.N., Liu, X., Pahan, K. (2006). Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. Journal of Neuroimmune Pharmacology 1, 212-222.
Sgubin, D., Aztiria, E., Perin, A., Longatti, P., and Leanza, G. (2007). Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. Journal of Neuroscience Research 85, 1647-1655.
Shingo, T., Sorokan, S.T., Shimazaki, T., and Weiss, S. (2001). Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. The Journal of Neuroscience 24, 9733-9743.
Silva-Vargas, V., Crouch, E.E., and Doetsch, F. (2013). Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Current Opinion in Neurobiology 23, 935-942.
Springborg, J.B., Sonne, B., Frederiksen, H.J., Foldager, N., Poulsgaard, L., Klausen, T., J?rgensen, O.S., and Olsen, N.V. (2003). Erythropoietin in the cerebrospinal fluid of patients with aneurysmal subarachnoid haemorrhage originates from the brain. Brain Research 984, 143-148.
Suarez, J.I., Tarr, R.W., and Selman, W.R. (2006). Aneurysmal subarachnoid hemorrhage. The New England Journal of Medicine 354, 387-396.
Sun, F., Wang, X., Mao, X., Xie, L., and Jin, K. (2012). Ablation of neurogenesis attenuates recovery of motor function after focal cerebral ischemia in middle-aged mice. Plos One 7, 1-8.
Thored, P., Arvidsson, A., Cacci, E., Ahlenius, H., Kallur, T., Darsalia, V., Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2006). Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24, 739-747.
Thored, P., Heldmann, U., Gomes-Leal, W., Gisler, R., Darsalia, V., Taneera, J., Nygren, J.M., Jacobsen, S.E., Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2009). Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57, 835-849.
Triaca, V., Tirassa, P., and Aloe, L. (2005). Presence of nerve growth factor and TrkA expression in the SVZ of EAE rats: evidence for a possible functional significance. Experimental Neurology 191, 53-64.
Tsai, P.T., Ohab, J.J., Kertesz, N., Groszer, M., Matter, C., Gao, J., Liu, X., Wu, H., and Carmichael, S.T. (2006). A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. The Journal of Neuroscience 26, 1269-1274.
van Gijn, J., Kerr, R.S., and Rinkel, G.J.E. (2007). Subarachnoid haemorrhage. The Lancet 369, 306-318.
Vergouwen, M.D., Ilodigwe, D., and Macdonald, R.L. (2011). Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke 42, 924-929.
Wang, L., Zhang, Z., Wang, Y., Zhang, R., and Chopp, M. (2004). Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35, 1732-1737.
Whitman, M.C., and Greer, C.A. (2009). Adult neurogenesis and the olfactory system. Progress in Neurobiology 89, 162-175.
Wiltrout, C., Lang, B., Yan, Y., Dempsey, R.J., and Vemuganti, R. (2007). Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochemistry International 50, 1028-1041.
Wong, R.W., and Guillaud, L. (2004). The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine and Growth Factor Reviews 15, 147-156.
Young, K.M., Merson, T.D., Sotthibundhu, A., Coulson, E.J., and Bartlett, P.F. (2007). p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. The Journal of Neuroscience 27, 5146-5155.
Zappaterra, M.W., and Lehtinen, M.K. (2012). The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cellular and Molecular Life Sciences 69, 2863-2878.
Zhang, R.L., Zhang, Z.G., Zhang, L., and Chopp, M. (2001). Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105, 33-41.
Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645-660.
Ziv, Y., and Schwartz, M. (2008). Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease. Trends in Molecular Medicine 14, 471-478.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53975-
dc.description.abstract蜘蛛網膜下出血是一個具有極高死亡率的疾病。此疾病常會造成病人長期的肢體功能、認知功能或是心智功能的損害。於過去的研究指出當老鼠發生蜘蛛網膜下出血時,其腦部的神經前驅細胞的細胞增生會出現增加的情形。然而目前對於調控蜘蛛網膜下出血之後的神經再生的機制並不是很清楚。因此藉由研究大鼠蜘蛛網膜下出血之後的神經再生情形,不僅能有機會了解此疾病的致病機轉之外,或許亦有利於建立新的治療方式。
本篇實驗我們是藉由抽取0.2毫升的大鼠股動脈血液並將其施打入cisterna magna中來做為蜘蛛網膜下出血的動物模式。老鼠分別於蜘蛛網膜下出血誘發後的第1、3、5和7天犧牲,其腦組織則以免疫組織化學染色之方法進行研究。實驗發現蜘蛛網膜下出血誘發的第7天,於subventricular zone (SVZ)的區域表現Ki67 (細胞進行增生時於細胞核中所表現的一種蛋白) 的細胞出現顯著增加的情形。此外於發病之後的第5和7天,在striatum亦有觀察到表現doublecortin (DCX)的細胞 (特別表現於神經母細胞的一種細胞骨架蛋白)以及Glial fibrillary acidic protein (GFAP)的細胞 (特別表現於星狀細胞的一種蛋白) 皆於數量上呈現最高峰的情形。以上的實驗結果顯示腦部於蜘蛛網膜下出血之後,位於SVZ的神經再生的能力出現了提升的情形。
由於當腦部出現損害之後,於受損區域所生成的生長因子或是細胞激素可能會擴散至SVZ,進一步的進入腦室系統中,因此我們就蒐集了不同發病天數老鼠的腦脊髓液,利用生物體外的方法 (in vitro) 測試其對神經幹細胞的影響。於本篇實驗我們是採集胚胎年齡為15天之大鼠的終腦 (telencephalon) 作為神經幹細胞的來源。首先我們將細胞培養在含有DMEM/F12,N2添加劑和鹼性纖維母細胞生長因子 (bFGF) 的培養液中6天,待其形成初級神經球 (neurosphere) 之後,再以0.5%腦脊髓液進行測試,評估其對神經幹細胞神經再生的影響。於細胞免疫染色的結果中發現,發病第5和7天的腦脊髓液測試組別中,除了表現Ki67的細胞有增加的情形之外,表現DCX或是Tuj-1(特別表現於成熟的神經細胞之細胞骨架蛋白) 的細胞皆呈現增加。此外於酵素結合免疫吸附分析 (ELISA) 中發現於蜘蛛網膜下出血之後,腦脊髓液中的腦源性神經營養因子(brain- derived neurotrophic factor, BDNF)出現顯著的增加。為了進一步的證實BDNF對於促進神經再生以及神經分化的重要性,於是我們分別利用細胞免疫染色以及縮時攝影(time-lapse)的技術進行觀察。結果發現0.5%腦脊髓液的測試組別其促進神經再生以及神經分化的能力相較於陽性對照組(positive control)並無統計上的差異。由於根據先前的研究發現,活化的小膠質細胞(microglia)具有調控SVZ神經再生的能力,因此本篇研究我們想要探討活化的小膠質細胞於蜘蛛網膜下出血的神經再生過程中可能扮演的角色。在ED-1(特別表現於活化的小膠質細胞之蛋白)和Iba-1(表現於小膠質細胞之蛋白)的免疫組織染色的結果發現於發病的第5和7天,在SVZ的小膠質細胞的活化比例出現增加的情形。另外在SVZ的免疫化學染色的結果亦發現BDNF的表現增加,且小膠質細胞和星狀細胞內亦有BDNF的表現。因此由以上的實驗我們可以得知BDNF是扮演促進蜘蛛網膜下出血之後神經再生以及神經分化主要因子。
總結本篇實驗,BDNF是扮演促進蜘蛛網膜下出血之後神經再生以及神經分化主要因子。而BDNF的表現增加則可能與小膠質細胞活化增加或是星狀細胞的調控有關。
zh_TW
dc.description.abstractSubarachnoid hemorrhage (SAH) is a disease with high mortality rate. Patients suffered from SAH may have long-term physical, neurocognitive, psychiatric, and/or psychological impairments. In rodent brain, increased proliferation of neural precursor cells after SAH has been reported. Nevertheless, the relationship between neurogenesis and SAH has not been fully understood. Investigating the proliferation capacity of neural stem cell (NSC) in SAH rats provides a chance not only to delineate the pathogenesis of this disease, but also to find out the potential application for treatments.
In this study, we produced SAH rats by injecting rats with 0.2 ml autologous blood from femoral artery into cisterna magna. Animals were sacrificed on days 1, 3, 5 and 7 after SAH induction and their brains were prepared for the immunohistochemistry study. On day 7 after SAH, an increased amount of the cells positive for Ki67 (a marker for cell proliferation) in the subventricular zone (SVZ) was observed. In addition, the amount of cells positive for doublecortin (DCX, a marker for neuroblast) and glial fibrillary acid protein (GFAP, a marker for astrocyte) in the striatum reached a peak on day 5 and 7 respectively after SAH. These results indicated SVZ neurogenesis was enhanced after SAH.
Since the growth factors or cytokines produced around the lesion might diffuse into the SVZ and circulate into the cerebral ventrical system, we collected cerebrospinal fluid (CSF) from different post SAH time points on days 3, 5 and 7 for in vitro study. Furthermore, we isolated the neural stem cells from the embryonic day 15 rat fetal telencephalon. For primary neurospheres, cells were cultured in DMEM/F12 containing N2 supplement and bFGF for 6 days. We then supplemented culture medium with 0.5% traumatic CSF to test its effects on neurogenesis in vitro. We found increased expression of not only ki67 in the neurospheres but DCX and Tuj-1(a marker for mature neuron) in groups day-5 and -7 by immunocytochemistry. Furthermore, ELISA analysis was applied to test the functional factors in the CSF, we found that brain derived neurotrophic factor (BDNF) was significantly increased after SAH. Functional assay including immunocytostaining and timelapse recording was performed to confirm the effect of BDNF on the neurogenesis and neuronal differentiation. We found that both the levels of neurogenesis and neuronal differentiation in the 0.5% CSF treatment group were comparable to the positive control. Additionally, in light of the instructive function of activated microglia in SVZ, we want to explore the roles of activated microglia after SAH. Increased co-staining of ED-1 (a marker for activated microglia)/ Iba-1 (a marker for microglia) was noticed in the SVZ on day 5 and 7 post SAH by the immunohistochemistry study. Furthermore, increased expression of BDNF in microglia and astrocyte was also demonstrated in the SVZ on day 5 and 7 post SAH. Thus, it might suggest that BDNF plays a major role in promoting the neurogenesis and neuronal differentiation after SAH.
In summary, increased expression of BDNF which may correlate with the activation of microglial or astrocyte exert an important role in promoting neurogenesis and neuronal differentiation of SVZ after SAH.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:35:14Z (GMT). No. of bitstreams: 1
ntu-104-R02446001-1.pdf: 9548034 bytes, checksum: 088650a9087cd6f22fc9d1df379cdc3c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書……………………………………………………… i
誌謝………………………………………………………………………ii
摘要……………………………………………………………………iii
Abstract………………………………………………………………… v
Lists of Figures……………………………………………………viii
Chapter 1:Introduction……………………………………………1
Chapter 2:Materials and Methods…………………………………7
Chapter 3:Results……………………………………………………16
Chapter 4:Discussion………………………………………………23
Figure Legends…………………………………………………………30
References……………………………………………………………61
dc.language.isoen
dc.subject腦脊髓液zh_TW
dc.subject蜘蛛網膜下出血zh_TW
dc.subject腦源性神經營養因子(BDNF)zh_TW
dc.subject活化小膠質細胞zh_TW
dc.subject神經再生zh_TW
dc.subjectSVZzh_TW
dc.subjectSAHen
dc.subjectBDNFen
dc.subjectactivated microgliaen
dc.subjectCSFen
dc.subjectSVZen
dc.subjectneurogenesisen
dc.title蜘蛛網膜下出血對大鼠Subventricular zone
神經再生的影響
zh_TW
dc.titleChange of neurogenesis capacity in the rat subventricular zone after subarachnoid hemorrhageen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡力凱,陳旭照
dc.subject.keyword蜘蛛網膜下出血,神經再生,SVZ,腦脊髓液,活化小膠質細胞,腦源性神經營養因子(BDNF),zh_TW
dc.subject.keywordSAH,neurogenesis,SVZ,CSF,activated microglia,BDNF,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2015-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
9.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved