請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53968完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信希(Hsin-Hsi Chen) | |
| dc.contributor.author | Jun-Jie Wang | en |
| dc.contributor.author | 王俊杰 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:35:00Z | - |
| dc.date.available | 2015-07-29 | |
| dc.date.copyright | 2015-07-29 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-28 | |
| dc.identifier.citation | 梅家駒, 竺一鳴, 高蘊琦, and 殷鴻翔(1993). 同義詞詞林. 臺灣東華書局股份有限公司.
田村直良and 和田啟二(1998). Text structuring by composition and decomposition of segments. 自然言語処理, 5(1):59–78. Argamon, S., Bloom, K., Esuli, A., and Sebastiani, F. (2009). Automatically determining attitude type and force for sentiment analysis. In Human Language Technology. Challenges of the Information Society, pages 218–231. Springer. Arora, R. and Srinivasa, S. (2014). A faceted characterization of the opinion mining landscape. In COMSNETS, pages 1–6. Bross, J. and Ehrig, H. (2013). Automatic construction of domain and aspect specific sentiment lexicons for customer review mining. In Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, pages 1077–1086. ACM. Chaovalit, P. and Zhou, L. (2005). Movie review mining: A comparison between supervised and unsupervised classification approaches. In System Sciences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii International Conference on, pages 112c–112c. IEEE. Chen, H.-H. (1994). The contextual analysis of chinese sentences with punctuation marks. Literary and linguistic computing, 9(4):281–289. Chen, Y.-R. (2014). Opinion spam analysis and detection - leaked confidential information as ground truth. Master’s thesis, National Taiwan University. Chu, B.-Y., Ho, C.-H., Tsai, C.-H., Lin, C.-Y., and Lin, C.-J. (2015). Warm start for parameter selection of linear classifiers. 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-2015). Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning, pages 160–167. ACM. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost) from scratch. J. Mach. Learn. Res.,12:2493–2537. Dave, K., Lawrence, S., and Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of the 12th international conference on World Wide Web, pages 519–528. ACM. dos Santos, C. N. and Gatti, M. (2014). Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of the 25th International Conference on Computational Linguistics (COLING), Dublin, Ireland, pages 69–78, Dublin, Ireland. Dublin City University and Association for Computational Linguistics. Esuli, A. and Sebastiani, F. (2005). Determining the semantic orientation of terms through gloss classification. In Proceedings of the 14th ACM international conference on Information and knowledge management, pages 617–624. ACM. Fan, R., Chang, K., Hsieh, C., Wang, X., and Lin, C. (2008). LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871–1874. Ganu, G., Elhadad, N., and Marian, A. (2009). Beyond the stars: Improving rating predictions using review text content. In WebDB, volume 9, pages 1–6. Citeseer. Gindl, S., Weichselbraun, A., and Scharl, A. (2010). Cross-domain contextualisation of sentiment lexicons. In 19th European Conference on Artificial Intelligence (ECAI). Greene, S. and Resnik, P. (2009). More than words: Syntactic packaging and implicit sentiment. In Proceedings of human language technologies: The 2009 annual conference of the north american chapter of the association for computational linguistics, pages 503–511. Association for Computational Linguistics. Hatzivassiloglou, V. and McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of the 35th annual meeting of the association for computational linguistics and eighth conference of the european chapter of the association for computational linguistics, pages 174–181. Association for Computational Linguistics. Hatzivassiloglou, V. and Wiebe, J. M. (2000). Effects of adjective orientation and gradability on sentence subjectivity. In Proceedings of the 18th conference on Computational linguistics-Volume 1, pages 299–305. Association for Computational Linguistics. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE, 29(6):82–97. Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 168–177. ACM. Huang, H.-H., Chang, T.-W., Chen, H.-Y., and Chen, H.-H. (2014). Interpretation of chinese discourse connectives for explicit discourse relation recognition. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 632–643, Dublin, Ireland. Dublin City University and Association for Computational Linguistics. Jo, Y. and Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 815–824. ACM. Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. Springer. Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188. Karpathy, A. and Fei-Fei, L. (2014). Deep visual-semantic alignments for generating image descriptions. arXiv preprint arXiv:1412.2306. Kim, S., Zhang, J., Chen, Z., Oh, A. H., and Liu, S. (2013). A hierarchical aspectsentiment model for online reviews. In AAAI. Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882. Kotzias, D., Denil, M., Blunsom, P., and de Freitas, N. (2014). Deep multi-instance transfer learning. arXiv preprint arXiv:1411.3128. Krestel, R. and Siersdorfer, S. (2013). Generating contextualized sentiment lexica based on latent topics and user ratings. In Proceedings of the 24th ACM Conference on Hypertext and Social Media, pages 129–138. ACM. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105. Kroeger, P. R. (2005). Analyzing grammar: An introduction. Cambridge University Press. Ku, L.-W. and Chen, H.-H. (2007). Mining opinions from the web: Beyond relevance retrieval. Journal of the American Society for Information Science and Technology, 58(12):1838–1850. Ku, L.-W., Huang, T.-H., and Chen, H.-H. (2009). Using morphological and syntactic structures for chinese opinion analysis. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3, pages 1260–1269. Association for Computational Linguistics. Ku, L.-W., Huang, T.-H., and Chen, H.-H. (2010). Construction of a chinese opinion treebank. In Chair), N. C. C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., and Tapias, D., editors, Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta. European Language Resources Association (ELRA). Le, Q. V. and Mikolov, T. (2014). Distributed representations of sentences and documents. arXiv preprint arXiv:1405.4053. Lewis, D. D. (1998). Naive (bayes) at forty: The independence assumption in information retrieval. In Machine learning: ECML-98, pages 4–15. Springer. Ling, X., Mei, Q., Zhai, C., and Schatz, B. (2008). Mining multi-faceted overviews of arbitrary topics in a text collection. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 497–505. ACM. Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of natural language processing, 2:627–666. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1):1–167. Liu, Y., Yu, X., Chen, Z., and Liu, B. (2013). Sentiment analysis of sentences with modalities. In Proceedings of the 2013 international workshop on Mining unstructured big data using natural language processing, pages 39–44. ACM. Lu, Y., Castellanos, M., Dayal, U., and Zhai, C. (2011). Automatic construction of a context-aware sentiment lexicon: an optimization approach. In Proceedings of the 20th international conference on World wide web, pages 347–356. ACM. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Recurrent neural network based language model. In INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages 1045–1048. Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013c). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119. Mikolov, T., Yih, W.-t., and Zweig, G. (2013d). Linguistic regularities in continuous space word representations. In HLT-NAACL, pages 746–751. Mikolov, T. and Zweig, G. (2012). Context dependent recurrent neural network language model. In SLT, pages 234–239. Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. Knowledge and Data Engineering, IEEE Transactions on, 22(10):1345–1359. Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 115–124. Association for Computational Linguistics. Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1-2):1–135. Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, pages 79–86. Association for Computational Linguistics. Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12:1532–1543. Rodríguez-Penagos, C., Grivolla, J., and Fibá, J. C. (2012). A hybrid framework for scalable opinion mining in social media: detecting polarities and attitude targets. In Proceedings of the Workshop on Semantic Analysis in Social Media, pages 46–52. Association for Computational Linguistics. Seki, Y., Eguchi, K., and Kando, N. (2004). Analysis of multi-document viewpoint summarization using multi-dimensional genres. In Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications, pages 142–145. Shastri, L., Parvathy, A. G., Kumar, A., Wesley, J., and Balakrishnan, R. (2010). Sentiment extraction: Integrating statistical parsing, semantic analysis, and common sense reasoning. In IAAI. Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the conference on empirical methods in natural language processing (EMNLP), volume 1631, page 1642. Citeseer. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958. Tan, S. and Zhang, J. (2008). An empirical study of sentiment analysis for chinese documents. Expert Systems with Applications, 34(4):2622–2629. Tozakis, L. and Blech, R. (1997). The Complete Idiot’s Guide to Grammar and Style. THE COMPLETE IDIOT’S GUIDE. DK Publishing. Tromp, E. and Pechenizkiy, M. (2013). Rbem: a rule based approach to polarity detection. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, page 8. ACM. Turney, P. D. and Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS), 21(4):315–346. Vanzo, A., Castellucci, G., Croce, D., and Basili, R. (2014a). A context based model for sentiment analysis in twitter for the italian language. In Proceedings of the First Italian Conference on Computational Linguistics CLiC-it & the Fourth International Workshop EVALITA, pages 379–383. Vanzo, A., Croce, D., and Basili, R. (2014b). A context-based model for sentiment analysis in twitter. In Proceedings of COLING, pages 2345–2354. Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2014). Show and tell: A neural image caption generator. arXiv preprint arXiv:1411.4555. Weichselbraun, A., Gindl, S., and Scharl, A. (2013). Extracting and grounding contextaware sentiment lexicons. IEEE Intelligent Systems, 28(2):39–46. Wilson, T., Wiebe, J., and Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the conference on human language technology and empirical methods in natural language processing, pages 347–354. Association for Computational Linguistics. Wu, Y., Zhang, Q., Huang, X., and Wu, L. (2011). Structural opinion mining for graphbased sentiment representation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1332–1341. Association for Computational Linguistics. Yang, B. and Cardie, C. (2014). Context-aware learning for sentence-level sentiment analysis with posterior regularization. In Proceedings of ACL. Yang, C., Lin, K. H.-Y., and Chen, H.-H. (2007). Building emotion lexicon from weblog corpora. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pages 133–136. Association for Computational Linguistics. Yi, J., Nasukawa, T., Bunescu, R., and Niblack, W. (2003). Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, pages 427–434. IEEE. Yu, C.-H., Tang, Y.-j., and Chen, H.-H. (2012a). Development of a web-scale chinese word n-gram corpus with parts of speech information. In LREC, pages 320–324. Yu, H.-C., Huang, T.-H. K., and Chen, H.-H. (2012b). Domain dependent word polarity analysis for sentiment classification. ROCLING XXIV (2012), page 30. Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv preprint arXiv: 1212.5701. Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014, pages 818–833. Springer. Zhao, J., Liu, K., and Wang, G. (2008). Adding redundant features for crfs-based sentence sentiment classification. In Proceedings of the conference on empirical methods in natural language processing, pages 117–126. Association for Computational Linguistics. Zhen, H. (2014). Aspect-based opinion mining of customer reviews. PhD thesis, Nanyang Technological University. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53968 | - |
| dc.description.abstract | In this “Big Data Era”, mining valuable information from customer reviews can benefit both companies and customers. Sentiment analysis on customer reviews remains to be challenging due to the variety of human language
usages. This thesis proposes a new concept of context in sentiment analysis by exploring real data and referencing works in linguistics. In spite of the popular definition of context which refers to the surroundings of a word and is often used in word sense disambiguation, our context refers to a fragment of texts which only contain ambiguous opinion words or even no opinion words. To conduct the sentiment analysis on customer reviews, a new Chinese customer review dataset in the hotel domain has is on both the snippet level and the clause level. For clause segmentation, two strategies, i.e., punctuation-based method and parsing-based method, have been proposed, and the polarity shift caused by discourse markers and negation operators is also considered in the parsing-based method. To extract the context, two types of the opinion word lexicons are first built and then checked and filtered manually. Thus, four types of lexicons are constructed. We then apply these four lexicons to extracting context on both the snippet level and the context level. In the sentiment classification experiments, Support Vector Machine (SVM) model with bag-of-words features and Convolutional Neuron Network (CNN) model with word embedding vectors are employed. The experimental results show that CNN model can always achieve the highest performance on both levels. Besides, the results also indicate that considering context in the process of sentiment analysis on customer reviews is necessary. In addition, detail error analysis and case study are also performed to understand the experimental results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:35:00Z (GMT). No. of bitstreams: 1 ntu-104-R02944048-1.pdf: 1168883 bytes, checksum: c0e89072ba2d8f81a328653c522dbeb1 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Sentiment Analysis on Customer Reviews . . . . . . . . . . . . . . . . . 1 1.2 Rhetorical Modes in Written Texts . . . . . . . . . . . . . . . . . . . . . 3 1.3 Concept of Context and Research Goal . . . . . . . . . . . . . . . . . . . 6 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Sentiment Analysis in Different Granularities . . . . . . . . . . . . . . . 9 2.1.1 Document-level Sentiment Analysis . . . . . . . . . . . . . . . . 9 2.1.2 Sentence-level Sentiment Analysis . . . . . . . . . . . . . . . . . 10 2.1.3 Word-level Sentiment Analysis . . . . . . . . . . . . . . . . . . 11 2.2 Context Aware Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . 11 2.3 Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Word representation . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Sentence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Dataset Selection and Concept Clarification . . . . . . . . . . . . . . . . 19 3.2 Dataset Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Preprocessing the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Word Embedding Pre-training Dataset . . . . . . . . . . . . . . . . . . . 28 4 Context Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Clause Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.1 Punctuation-based Method . . . . . . . . . . . . . . . . . . . . . 31 4.1.2 Parsing-based Method . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Discourse Marker Process Strategy . . . . . . . . . . . . . . . . 35 4.2 Lexicon Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 Lexicon Construction Methodology . . . . . . . . . . . . . . . . 40 4.2.2 Lexicon Construction Result . . . . . . . . . . . . . . . . . . . . 43 4.3 Context Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Context snippet extraction . . . . . . . . . . . . . . . . . . . . . 45 4.3.2 Context clauses extraction . . . . . . . . . . . . . . . . . . . . . 46 5 Context Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 Experiment Design and Method . . . . . . . . . . . . . . . . . . . . . . 49 5.1.1 Experiment Methods . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Experimental Result on the Snippet Level . . . . . . . . . . . . . . . . . 53 5.2.1 Experiment on the Complete Snippet . . . . . . . . . . . . . . . 53 5.2.2 Experiment on the Context Snippet . . . . . . . . . . . . . . . . 60 5.3 Experimental Result on the Clause Level . . . . . . . . . . . . . . . . . . 62 5.3.1 Ground Truth Labeling . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 Result of Classification on the Clause Level . . . . . . . . . . . . 65 5.3.3 Further Exploration on the CNN Model Issues . . . . . . . . . . 68 5.4 Error Analysis and Case Study . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.2 Case Study of Clause-level Classification Result . . . . . . . . . 78 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 | |
| dc.language.iso | en | |
| dc.subject | 情境相關之情緒分析 | zh_TW |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | 顧客評論之意見探勘 | zh_TW |
| dc.subject | Context-Aware Sentiment Analysis | en |
| dc.subject | Opinion Mining on Customer Reviews | en |
| dc.subject | Natural Language Processing | en |
| dc.title | 分析顧客評論之情景及其情緒分析之研究 | zh_TW |
| dc.title | Analyzing Context in Customer Reviews for Sentiment
Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建錦(Chien-Chin Chen),盧文祥(Wen-Hsiang Lu),林川傑(Chuan-Jie Lin) | |
| dc.subject.keyword | 自然語言處理,顧客評論之意見探勘,情境相關之情緒分析, | zh_TW |
| dc.subject.keyword | Natural Language Processing,Opinion Mining on Customer Reviews,Context-Aware Sentiment Analysis, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
