請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53954
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂良正(Liang-Jenq Leu) | |
dc.contributor.author | Xun Zhan | en |
dc.contributor.author | 詹洵 | zh_TW |
dc.date.accessioned | 2021-06-16T02:34:32Z | - |
dc.date.available | 2016-08-03 | |
dc.date.copyright | 2015-08-03 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-28 | |
dc.identifier.citation | Arora, J. S. 2011. Introduction to Optimal Design. London, Academic Press
Bends?e M. P. and Sigmund O. 2003. Topology Optimization: Theory, Methods and Applications. Berlin Heidelberg, Germany: Springer. Buck, E. M. and Yacktman, D. A. 2010. Cocoa Design Patterns. Boston, MA, United States: Addison-Wesley. Chen, D. W., Au, F. T. K., Tham, L. G. and Lee, P. K. K. 2000. Determination of Initial Cable Forces in Prestressed Concrete Cable-Stayed Bridges for Given Design Deck Profiles Using the Force Equilibrium Method. Computers and Structures 74: 1-9. Clausen, A., Aage, N. and Sigmund, O. 2014. Topology Optimization with Flexible Void Area. Structural and Multidisciplinary Optimization, 50(6), 927-943. Computers and Structures, Inc. 2014. SAP2000 Open Application Programming Interface (OAPI). Available at: http://www.csiamerica.com/sap2000/open-api. Accessed 2 May 2014. Cureos AB. 2013. C# port of COBYLA2 Nonlinear Constrained Optimization Method. Available at: https://github.com/cureos/cscobyla. Accessed 6 May 2014. Fowler, M. and Scott, K. 2000. UML Distilled: A Brief Guide to the Standard Object Modeling Language. Boston, MA, United States: Addison-Wesley. Flager, F., Adya, A., Haymaker, J. and Fischer, M. 2014. A Bi-level Hierarchical Method for Shape and Member Sizing Optimization of Steel Truss Structures. Computers and Structures 131: 1-11. Gamma, E., Johnson, R., Vlissides, J. and Helm, R. 1994. Design Patterns: Elements of Reusable Object-Oriented Software. Boston, MA, United States: Addison-Wesley. George, H. W. 1999. Influence of Deck Material on Response of Cable-Stayed Bridges to Live Loads. Journal of Bridge Engineering 4(2): 136-142. Gimsing, N.J. 1983. Cable Supported Bridges: Concept and Design Second Edition. New York: John Wiley & Sons. Hassan, M. M., Nassef, A. O., and El Damatty, A. A. 2013. Advances in Structural Engineering 16(3): 559-578. Hassan, M. M., Nassef, A. O. and El Damatty, A. A. 2012. Determination of Optimal Post-tensioning Cable Forces of Cable-Stayed Bridges. Engineering Structures 44: 248-259. Hassan, M. M. 2013. Optimization of Stay Cables in Cable-Stayed Bridges using Finite Element, Genetic Algorithm, and B-spline Combined Technique. Engineering Structures 49: 643-654. Hassan, M. M., Nassef, A. O. and El Damatty, A. A. 2013. Optimal Design of Semi-fan Cable-Stayed Bridges. Canadian Journal of Civil Engineering 40: 285-297. Haupt, R. L. and Haupt, S. E. 2004. Practical Genetic Algorithms. New York: John Wiley & Sons. Janjic, D., Pircher, M. and Pricher, H. 2003. Optimization of Cable Tensioning in Cable-Stayed Bridges. Journal of Bridge Engineering 8(3): 131-137. Ke, C. Y., Shih, K. W. and Leu, L. J. 2013. Applications of Element Exchange Method in Structural Topology Optimization. Proceedings of the 26th KKHTCNN Symposium on Civil Engineering 2013, Singapore. Ke, C. Y. 2014. Development of Structure Optimal Design Software: Application in Cable-Stayed Bridge Design. Master Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan Lai, Y. Y. and Wang, P. S. 2006 Nonlinear Analysis of Ta-Chi Cable-Stayed Bridge. Master Thesis, Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan (R.O.C.). Lee, T. Y., Kim, Y. H. and Kang, S. W. 2008. Optimization of Tensioning Strategy for Asymmetric Cable-Stayed Bridge and its Effect on Construction Process. Structural and Multidisciplinary Optimization 35(6): 623-629. Leu, L. J., Mukherjee, S., Wei, X. and Chandra, A. 1994. Shape Optimization in Elasticity and Elasto-viscoplasticity by the Boundary Element Method. International Journal of Solids and Structures 31(4): 533-550. Leu, L. J. 2012. Chapter 6: Programming for Frame12. Advanced Structural Theory. Lecture conducted from National Taiwan University, Taipei, Taiwan. Lin, Y. Y. and Cheng, C. M. 2006. Aero Dynamic Behavior Analysis of DaZhi Cable-Stayed Bridge (Chinese). Structural Engineering 21(2): 103-127. Lee, C. H. 2005. Development of a System Framework for Optimal Design Using Finite Element Package as the Analysis Engine. Master Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan McGuire, W., Gallagher, R. H. and Ziemian, R. D. 2000. Matrix Structural Analysis. New York: John Wiley & Sons. Microsoft Inc. 2014. Microsoft Developer Network (MSDN). Available at: http://msdn.microsoft.com/. Accessed 11 May 2014 Nazmy, A. S. and Abdel-Ghaffar, A. M. 1990. Three-dimensional Nonlinear Static Analysis of Cable-Stayed Bridges. Computers & Structures 34(2): 257-271. Pan, T. C., Ling, S. F. and Tseng, C. H. 1994. Integrating and Automating Finite Element Analysis and Optimization on PCs. International Journal of Computer Applications in Technology 7(3-6): 278-283. Piegl L. 1991. On NURBS: a survey. Comput Graph Appl, IEEE 11(1):55–71. Pourazady M. and Xu X. 2000. Direct Manipulations of B-spline and NURBS curves. Adv Eng Softw 31(2):107–18. Podolny, W. and Scalzy, J. B. 1986. Construction and Design of Cable-Stayed Bridges. New York: John Wiley & Sons. Powell, M. J. D. 2007. A View of Algorithms for Optimization without Derivatives. Cambridge University Technical Report: DAMTP 2007/NA03. Rouhi, M., Rais-Rohani, M. and Williams, T. N. 2010. Element Exchange Method for Topology Optimization. Structural and Multidisciplinary Optimization 42(2): 215-231. SAP2000. 2014. CSI Analysis Reference Manual for SAP2000, ETABS, SAFE and CSiBridge. Berkley, CA, United States: Computers and Structures, Inc. Schneider, P., Schneider A. and Schwarz P. 2002. A Modular Approach for Simulation-Based Optimization of MEMS. Microelectronics Journal 33(1-2): 29-38. Schmit, L. A., Jr., and Miura, H. 1974. Approximation concepts for efficient structural synthesis. American Institute of Aeronautics and Astronautics Journal 12(5): 692-699. Simões, L. M. C. and Negrão, J. H. O. 1994. Sizing and Geometry Optimization of Cable-Stayed Bridges. Computers & Structures 52(2): 309-321. Sung, Y. C., Cheng, D. W. and Teo, E. H. 2006. Optimal Post-tensioning Cable Forces of Mau-Lo Hsi Cable-stayed Bridge. Engineering Structures 28(10): 1407-1417. Svensson, H. 2012. Cable-Stayed Bridges: 40 Years of Experience Worldwide. Berlin, Germany: Wilhelm Ernst & Sohn.. Tsai, C. Y. 1999. Cable-Stayed Bridges (Chinese). Scientific & Technical Publishing Co., Ltd. Taipei, Taiwan Vanderplaats, G. N. and Salajegheh, E. 1989. New Approximation Method for Stress Constraints in Structural Synthesis. AIAA Journal, 27(3), 352-358 Wang, D., Zhang, W. H. and Jiang, J. S. 2002. Truss Shape Optimization with Multiple Displacement Constraints. Computer Methods in Applied Mechanics and Engineering 191: 3597-3612. Wang, P. H., Tseng, T. C. and Yang, C. G. 1993. Initial Shape of Cable-Stayed Bridges. Computers and Structures 47(1): 111-123. Wang, P. H. and Yang, C. G. 1996. Parametric Studies on Cable-Stayed Bridges Computers and Structures 60(2): 243-260. Walther, R., Houriet, B., Inler, W. and Moia, P. 1988. Cable-Stayed Bridges. London: Telford. Wu, S. C 2004. 3-Dimensional Nonlinear Analysis of Kao-Ping-Hsi Cable-Stayed Bridge. Master Thesis, Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan Xie, Y. M. and Steven, G.P. 1997. Evolutionary Structural Optimization. Berlin Heidelberg, Germany: Springer. Yang, X. Y., Xie, Y. M., Steven, G. P. and Querin, O. M. 1999. Bidirectional evolutionary method for stiffness optimization. AIAA journal, 37(11), 1483-1488. 宋裕祺,張荻薇,'斜張橋之最佳化設計',中國土木水利工程學刊,第十卷,第二期,第299至306頁,民國87年6月 宋裕祺,王俊穎,'結合粒子群演算法與遺傳演算法於斜張橋鋼索預力之最佳化設計',中國土木水利工程,第二十七卷,第一期,民國一○四年,第1-10頁 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53954 | - |
dc.description.abstract | 在現代橋梁設計中,斜張橋作為當今中長跨度橋梁中最為常用的橋型之一,其通透輕盈的美學效果以及良好的經濟性能受到了建築師和工程師的一致認同。但是斜張橋可供選擇變化的設計參數眾多,在設計過程中,設計者對於橋塔高度、橋塔傾斜角度、橋塔曲率半徑、鋼索錨碇位置、鋼索數目、鋼索預力大小等,常受限於設計時程緊迫只得以類似之工程案例推估,無法逐一探索其是否為最經濟配置,且由於其鋼索系統的高度靜不定以及非線性性質使其若要進行最佳化設計時不僅有大量的設計變數,還有複雜的結構分析過程。
本文從結構最佳化及其軟體架構開始談起,並了解到斜張橋結構最佳化的難度,然後通過蒐集世界各地27座斜張橋的資料,做了參數分析,結合實際工程提出了單塔以及雙塔斜張橋最佳化設計的初始模型。 在有了斜張橋最佳化的初始模型後,利用結構分析軟體SAP2000所提供的強大分析能力,可以在計算斜張橋結構時考慮到其各方面的非線性行為。接下來結合本研究團隊開發之結構最佳化軟體SODIUMM,通過其對最佳化參數設定的靈活度可以在斜張橋最佳化中加入B-spline技術,雙層最佳化技術。在應用了以上技術之後,從斜張橋的初始模型出發,對其進行了最佳化設計,在眾多的最佳化設計結果基礎上,本文分析了B-spline對於斜張橋鋼索預力最佳化之意義,探討了不同目標函數對最佳化結果的影響,提出了一些可供工程師參考的設計準則,例如最佳壓重與跨度比的關係。 斜張橋設計是一項複雜的工作,本研究旨在通過最佳化技術解決斜張橋設計中的一部分問題,為工程師提供一個有力的設計工具以及一些設計準則。 | zh_TW |
dc.description.abstract | The Cable-stayed bridge is one of the most popular bridge types chosen by architects or structure engineer in modern bridge design because of its aesthetic appeal and economy. When designing cable-stayed bridges, a lot of design variables such as cable forces, pylon height, number of cables need to be decided and it might be time consuming for engineers to consider them in detail. In addition, as cable-stayed bridges are highly undetermined with severe nonlinearity, complex and time-consuming structural analyses needs to be performed.
The research mainly focuses on the optimization design of cable-stayed bridge. Design parameters are studied among 27 representative cable-stayed bridges in different classifications to provide practical design region. Initial models of optimization design for both single and double pylon configurations are proposed based on the above study. SAP2000 is used to analyze cable-stayed bridge structure because of its powerful nonlinearity ability. And SODIUMM is a flexible structure optimization software that supports SAP2000 as its structure analysis software. The B-spline technique and multi-level optimization scheme are implemented in SODIUMM and several cable-stayed bridge optimization examples are presented. The effect of B-spline and different objective functions is discussed based on the presented optimal solutions. Some simple design suggestions are made for engineers like counter weight value. Design of cable-stayed bridge is a tough task. The research is aimed at solving some specific problems of cable-stayed bridges and provide engineers an efficient way and optimization pattern for cable-stayed bridge. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:34:32Z (GMT). No. of bitstreams: 1 ntu-104-R02521252-1.pdf: 7051398 bytes, checksum: d3d59635e20058c1ad37dd8ba9b6857e (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
摘要 iii ABSTRACT v 目錄 vii 圖目錄 xi 表目錄 xix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 結構分析軟體與最佳化設計之現有整合方式 2 1.2.2 現有整合結構分析軟體與最佳化設計之架構 3 1.2.3 斜張橋最佳化 5 1.3 研究內容 5 第二章 結構最佳化設計 7 2.1 前言 7 2.2 最佳化問題描述 7 2.3 結構最佳化 8 2.3.1 尺寸最佳化 9 2.3.2 形狀最佳化 9 2.3.3 拓樸最佳化 10 2.3.4 斜張橋最佳化設計 11 2.4 多層最佳化 12 2.5 最佳化演算法 12 2.5.1 實數編碼基因演算法(Real-Coded Genetic Algorithm) 12 2.5.2 COBYLA 13 2.6 最佳化流程 13 2.7 本章小結 14 第三章 斜張橋 15 3.1 前言 15 3.2 主要結構組成 17 3.2.1 主梁 17 3.2.2 橋塔 20 3.2.3 鋼索 21 3.3 斜張橋支承系統型式 22 3.4 非線性行為 23 3.4.1 鋼索幾何非線性 24 3.4.2 P-delta效應 26 3.5 壓重配置 26 3.6 分析方法 29 3.6.1 SAP2000結構分析軟體 29 3.6.2 B-spline 29 3.7 世界各地單塔斜張橋基本資料蒐集 31 3.7.1 Kniebrücke 31 3.7.2 Oberkassel Bridge 32 3.7.3 Fleher Bridge 33 3.7.4 大直橋 34 3.7.5 East Huntington Bridge 35 3.7.6 Veterans' Glass City Skyway 36 3.7.7 Rügen Bridge 37 3.7.8 Eilandbrug 38 3.7.9 Erasmusbrug 39 3.7.10 Bickensteg 40 3.7.11 Samuel Beckett Bridge 41 3.7.12 高屏溪斜張橋 42 3.7.13 社子大橋 43 3.7.14 Alamillo Bridge 44 3.7.15 Puerto Madero Footbridge 45 3.7.16 Turtle Bay Sundial Bridge 46 3.8 世界各地雙塔斜張橋基本資料蒐集 47 3.8.1 Erskine Bridge 47 3.8.2 Strömsund Bridge 48 3.8.3 Beekerwerther Bridge 49 3.8.4 Pasco-Kennewick Bridge 50 3.8.5 Sunshine Skyway Bridge 51 3.8.6 Helgeland Bridge 52 3.8.7 Barrios de Luna Bridge 53 3.8.8 Tatara Bridge 54 3.8.9 Normandy Bridge 55 3.8.10 Bill Emerson Memorial Bridge 56 3.8.11 楊浦大橋 57 3.9 參數分析 58 3.9.1 跨度及跨度比 58 3.9.2 橋塔高度 60 3.9.3 鋼索配置 62 3.9.4 主梁深度 64 3.10 初始設計模型 66 3.11 本章小結 68 第四章 斜張橋最佳化設計 69 4.1 前言 69 4.2 鋼索預力最佳化 69 4.2.1 B-spline應用於鋼索預力最佳化 69 [例題4-1] 單塔斜張橋鋼索預力最佳化(不使用B-spline) 71 [例題4-2] 單塔斜張橋鋼索預力最佳化(使用B-spline) 73 [例題4-1]與[例題4-2]之比較 74 [例題4-3]雙塔斜張橋鋼索預力最佳化(不使用B-spline) 75 [例題4-4]雙塔斜張橋鋼索預力最佳化(使用B-spline) 77 [例題4-3]與[例題4-4]之比較 78 4.2.2 使用不同目標函數於鋼索預力最佳化 79 [例題4-1*]單塔斜張橋鋼索預力最佳化(目標函數為位移平方和) 79 [例題4-2*] 單塔斜張橋鋼索預力最佳化(目標函數為位移平方和) 80 [例題4-1*]與[例題4-2*]之比較 81 [例題4-3*]雙塔斜張橋鋼索預力最佳化(目標函數為位移平方和) 82 [例題4-4*]雙塔斜張橋鋼索預力最佳化(目標函數為位移平方和) 83 [例題4-3*]與[例題4-4*]之比較 84 4.2.3 本節小結 84 4.3 跨度比和壓重配置 85 [例題4-5]不同跨度比單塔斜張橋壓重大小最佳化分析 85 [例題4-5*]不同跨度比單塔斜張橋壓重大小最佳化分析 92 [例題4-5**]不同跨度比單塔斜張橋壓重大小最佳化分析 98 [例題4-5]、[例題4-5*]與[例題4-5**]之比較 104 [例題4-6]不同跨度比雙塔斜張橋壓重大小最佳化分析 108 [例題4-6*]不同跨度比雙塔斜張橋壓重大小最佳化分析 113 [例題4-6**]不同跨度比雙塔斜張橋壓重大小最佳化分析 117 [例題4-6]、[例題4-6*]與[例題4-6**]之比較 121 4.4 橋塔高度 124 [例題4-7]不同跨度比雙塔斜張橋壓重大小最佳化分析 124 [例題4-8]不同跨度比雙塔斜張橋壓重大小最佳化分析 126 4.5 本章小結 128 第五章 結論與未來展望 129 5.1 結論 129 5.2 未來工作 129 REFERENCE 131 | |
dc.language.iso | zh-TW | |
dc.title | 結合結構分析軟體與最佳化設計軟體之斜張橋設計 | zh_TW |
dc.title | Optimal Design of Cable-Stayed Bridge
Using Structural Analysis Software and Optimal Design Software | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 宋裕祺,郭世榮,黃仲偉 | |
dc.subject.keyword | 斜張橋,B-spline,雙層最佳化,結構最佳化,SAP2000,SODIUMM,目標函數, | zh_TW |
dc.subject.keyword | Cable-stayed bridge,Bi-level optimization,B-spline technique,SAP2000,SODIUMM,Structural Optimization,Objective function, | en |
dc.relation.page | 135 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。