請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53947完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鵬鵬(Pung-Pung Hwang) | |
| dc.contributor.author | Hung-Ling Lee | en |
| dc.contributor.author | 李竑霖 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:34:18Z | - |
| dc.date.available | 2020-09-02 | |
| dc.date.copyright | 2015-09-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-28 | |
| dc.identifier.citation | References Abbas L, Hajihashemi S, Stead LF, Cooper GJ, Ware TL, Munsey TS, Whitfield TT, White SJ. 2011. Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. J Physiol. 589(6): 1489-1503. Ade T, Segner H, Hanke W. 1995. Hormonal response of primary hepatocytes of the clawed toad, Xenopus laevis. Exp Clin Endocrinol Diabetes. 103(1):21-27. Amorim JB, Musa-Aziz R, Mello-Aires M, Malnic G. 2004. Signaling path of the action of AVP on distal K+ secretion. Kidney Int. 66(2):696-704. Balment RJ, Brimble MJ, Jones L, Rodgers EM. 1980. Diuretic and antidiuretic responses to oxytocin administration in the rat. Br J Pharmacol. 68(1):154-155. Balment RJ, Warne JM, Tierney M, Hazon N. 1993. Arginine vasotocin and fish osmoregulation. Fish Physiol Biochem. 11(1-6):189-194. Balment RJ, Lu W, Weybourne E, Warne JM. 2006. Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen Comp Endocrinol. 147(1):9-16. Barreto-Chaves ML, de Mello-Aires M. 1997. Luminal arginine vasopressin stimulates Na+-H+ exchange and H+-ATPase in cortical distal tubule via V1 receptor. Kidney Int. 52(4):1035-1041. Birnbaumer M. Vasopressin receptors. 2000. Trends Endocrinol Metab. 11(10):406-410. Cádiz L, Román-Padilla J, Gozdowska M, Kulczykowska E, Martínez Rodríguez G, Mancera JM, Martos-Sitcha JA. 2015. Cortisol modulates vasotocinergic and isotocinergic pathways in the gilthead sea bream. J Exp Biol. 218(2):316-325. Carlson IH, Holmesh WN. 1962. Changes in the hormone content of the hypothalamo hypophysial system of the rainbow trout (Salmo gairdneri). J Endocrinol. 24:23-32. Casavola V, Guerra L, Helmle-Kolb C, Reshkin SJ, Murer H. 1992. Na+/H+-exchange in A6 cells: polarity and vasopressin regulation. J Membr Biol. 130(2):105-114. Chang WJ, Horng JL, Yan JJ, Hsiao CD, Hwang PP. 2009. The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+ ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol. 296(4):1192-1201. Chassin C, Hornef MW, Bens M, Lotz M, Goujon JM, Vimont S, Arlet G, Hertig A, Rondeau E, Vandewalle A. 2007. Hormonal control of the renal immune response and antibacterial host defense by arginine vasopressin. J Exp Med. 204(12):2837-2852. Chiga M, Rai T, Yang SS, Ohta A, Takizawa T, Sasaki S, Uchida S. 2008. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 74(11):1403-1409. Chiu T, Wu SS, Santiskulvong C, Tangkijvanich P, Yee HF Jr, Rozengurt E. 2002. Vasopressin-mediated mitogenic signaling in intestinal epithelial cells. Am J Physiol Cell Physiol. 282(3):434-450. Conklin D, Chavas A, Duff D, Jr L, Zhang Y, Olson KR. 1997. Cardiovascular effects of arginine vasotocin in the rainbow trout Oncorhynchus mykiss. J Exp Biol. 200(22):2821-2832. Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, van Oost BA. 1994. Requirement of human renal water channel aquaporin-2 for vasopressin dependent concentration of urine. Science. 264(5155):92-95. Djelidi S, Fay M, Cluzeaud F, Escoubet B, Eugene E, Capurro C, Bonvalet JP, Farman N, Blot-Chabaud M. 1997. Transcriptional regulation of sodium transport by vasopressin in renal cells. J Biol Chem. 272(52):32919-32924. Eaton JL, Holmqvist B, Glasgow E. 2008. Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. Dev Dyn. 237(4):995-1005. Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K, Hirose S. 2007. Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiationis dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol. 292(1):470-480. Ferris CF, Melloni RH Jr, Koppel G, Perry KW, Fuller RW, Delville Y. 1997. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci. 17(11):4331-4340. Fujino Y, Nagahama T, Oumi T, Ukena K, Morishita F, Furukawa Y, Matsushima O, Ando M, Takahama H, Satake H, Minakata H, Nomoto K. 1999. Possible functions of oxytocin/vasopressin-superfamily peptides in annelids with special reference to reproduction and osmoregulation. J Exp Zool. 284(4):401-406. Ganz MB, Boyarsky G, Sterzel RB, Boron WF. 1989. Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems. Nature. 337(6208):648-651. Ghosh PM, Mikhailova M, Bedolla R, Kreisberg JI. 2001. Arginine vasopressin stimulates mesangial cell proliferation by activating the epidermal growth factor receptor. Am J Physiol Renal Physiol. 280(6):972-979. Giménez I, Forbush B. 2003. Short-term stimulation of the renal Na+-K+-Cl- cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem. 278(29):26946-26951. Gimpl G, Fahrenholz F. 2001. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 81(2):629-683. Goodson JL, Bass AH. 2000. Vasotocin innervation and modulation of vocal-acoustic circuitry in the teleost Porichthys notatus. J Comp Neurol. 422(3):363-379. Goodson JL. 2008. Nonapeptides and the evolutionary patterning of sociality. Prog Brain Res. 170:3-15. Goodson JL, Kingsbury MA. 2011. Nonapeptides and the evolution of social group sizes in birds. Front Neuroanat. 5:13. Gregório SF, Carvalho ES, Encarnação S, Wilson JM, Power DM, Canário AV, Fuentes J. 2013. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.). J Exp Biol. 216(3):470-479. Guibbolini ME, Pierson PM, Lahlou B. 2000. Neurohypophysial hormone receptors and second messengers in trout hepatocytes. J Endocrinol. 167(1):137-144. Haruta K, Yamashita T, Kawashima S. 1991. Changes in arginine vasotocin content in the pituitary of the Medaka (Oryzias latipes) during osmotic stress. Gen Comp Endocrinol. 83(3):327-336. Hasunuma I, Toyoda F, Okada R, Yamamoto K, Kadono Y, Kikuyama S. 2013. Roles of arginine vasotocin receptors in the brain and pituitary of submammalian vertebrates. Int Rev Cell Mol Biol. 304:191-225. Hiroyama M, Wang S, Aoyagi T, Oikawa R, Sanbe A, Takeo S, Tanoue A. 2007. Vasopressin promotes cardiomyocyte hypertrophy via the vasopressin V1A receptor in neonatal mice. Eur J Pharmacol. 559(2-3):89-97. Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, Hwang PP. 2007. A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS One. 2(3):302. Hwang PP, Lee TH. 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol. 148(3):479-497. Hwang PP. 2009. Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol. 212(11):1745-1752. Izumi Y, Hori K, Nakayama Y, Kimura M, Hasuike Y, Nanami M, Kohda Y, Otaki Y, Kuragano T, Obinata M, Kawahara K, Tanoue A, Tomita K, Nakanishi T, Nonoguchi H. 2011. Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid-base homeostasis. J Am Soc Nephrol. 22(4):673-680. Janicke M, Carney TJ, Hammerschmidt M. 2007. Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol. 307:258–271. Kizer NL, Vandorpe D, Lewis B, Bunting B, Russell J, Stanton BA. 1995. Vasopressin and cAMP stimulate electrogenic chloride secretion in an IMCD cell line. Am J Physiol. 268(5-2):854-861. Kleyman TR, Ernst SA, Coupaye-Gerard B. 1994. Arginine vasopressin and forskolin regulate apical cell surface expression of epithelial Na+ channels in A6 cells. Am J Physiol. 266(3-2):506-511. Kline RJ, O'Connell LA, Hofmann HA, Holt GJ, Khan IA. 2011. The distribution of an AVT V1a receptor in the brain of a sex changing fish, Epinephelus adscensionis. J Chem Neuroanat. 42(1):72-88. Knepper MA, Kim GH, Fernández-Llama P, Ecelbarger CA. 1999. Regulation of thick ascending limb transport by vasopressin. J Am Soc Nephrol. 10(3):628-634. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. 2012. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 92(4):1813-1864. Kulczykowska E, Stolarski J. 1996. Diurnal changes in plasma arginine vasotocin and isotocin in rainbow trout adapted to fresh water and brackish Baltic water. Gen Comp Endocrinol. 104(2):197-202. Kulczykowska E. 1998. Effects of arginine vasotocin, isotocin and melatonin on blood pressure in the conscious atlantic cod (Gadus morhua): hormonal interactions? Exp Physiol. 83(6):809-820. Koukoulas I, Risvanis J, Douglas-Denton R, Burrell LM, Moritz KM, Wintour EM. 2003. Vasopressin receptor expression in the placenta. Biol Reprod. 69(2): 679-686. Kutina AV, Marina AS, Natochin YV. 2014. The involvement of V1b-subtype vasopressin receptors in regulation of potassium ions excretion in the rat kidneys. Dokl Biol Sci. 459(1):338-340. Lenz HJ, Brown MR. 1990. Cerebroventricular calcitonin gene-related peptide inhibits rat duodenal bicarbonate secretion by release of norepinephrine and vasopressin. J Clin Invest. 85(1):25-32. Lolait SJ, O'Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ. 1992. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 357(6376):336-339. Mainoya JR. and Bern HA. 1984. Influence of vasoactive intestinal peptide and urotensin II on the absorption of water and NaCl by the anterior intestine of the tilapia, Sarotherodon mossambicus. Zoology. Sci. 1:100-105. Martos-Sitcha JA, Gregório SF, Carvalho ES, Canario AV, Power DM, Mancera JM, Martínez-Rodríguez G, Fuentes J. 2013. AVT is involved in the regulation of ion transport in the intestine of the sea bream (Sparus aurata). Gen Comp Endocrinol. 193:221-228. McCormick SD, Bradshaw D. 2006. Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol. 147(1):3-8. Miró L, Pérez-Bosque A, Maijó M, Naftalin RJ, Moretó M. 2014. Vasopressin regulation of epithelial colonic proliferation and permeability is mediated by pericryptal platelet derived growth factor A. Exp Physiol. 99(10):1325-1334. Morel A, O'Carroll AM, Brownstein MJ, Lolait SJ. 1992. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature. 356(6369): 523-526. Mulligan KA, McKnite SH, Lindner KH, Lindstrom PJ, Detloff B, Lurie KG. 1997. Synergistic effects of vasopressin plus epinephrine during cardiopulmonary resuscitation. Resuscitation. 35(3):265-271. Mutig K, Paliege A, Kahl T, Jöns T, Müller-Esterl W, Bachmann S. 2007. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol Renal Physiol. 293(4):1166-1177. Mutig K, Saritas T, Uchida S, Kahl T, Borowski T, Paliege A, Böhlick A, Bleich M, Shan Q, Bachmann S. 2010. Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Renal Physiol. 298(3):502-509. Ostrowski NL, Lolait SJ, Young WS 3rd. 1994. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology. 135(4):1511-1528. Pacheco-Alvarez D, Cristóbal PS, Meade P, Moreno E, Vazquez N, Muñoz E, Díaz A, Juárez ME, Giménez I, Gamba G. 2006. The Na+-Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem. 281(39):28755-28763. Pedersen NB, Hofmeister MV, Rosenbaek LL, Nielsen J, Fenton RA. 2010. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int. 78(2):160-169. Perrott MN, Carrick S, Balment RJ. 1991. Pituitary and plasma arginine vasotocin levels in teleost fish. Gen Comp Endocrinol. 83(1):68-74. Phelps SM, Young LJ. 2003. Extraordinary diversity in vasopressin (V1a) receptor distributions among wild prairie voles (Microtus ochrogaster): patterns of variation and covariation. J Comp Neurol. 466(4):564-576. Rivarola V, Ford P, del Pilar Flamenco M, Galizia L, Capurro C. 2007. Arginine vasopressin modulates intracellular pH via V1 and V2 receptors in renal collecting duct cells. Cell Physiol Biochem. 20(5):549-558. Russell WE, Bucher NL. 1983. Vasopressin modulates liver regeneration in the Brattleboro rat. Am J Physiol. 245(2):321-324. Schlatter E, Haxelmans S, Ankorina I, Kleta R. 1995. Regulation of Na+/H+ exchange by diadenosine polyphosphates, angiotensin II, andvasopressin in rat cortical collecting duct. J Am Soc Nephrol. 6(4):1223-1229. Schrier RW. 2009. Interactions between angiotensin II and arginine vasopressin in water homeostasis. Kidney Int. 76(2):137-139. Sugimoto T, Saito M, Mochizuki S, Watanabe Y, Hashimoto S, Kawashima H. 1994. Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J Biol Chem. 269(43):27088-27092. Tahara A, Tsukada J, Tomura Y, Suzuki T, Yatsu T, Shibasaki M. 2008. Vasopressin stimulates the production of extracellular matrix by cultured rat mesangial cells. Clin Exp Pharmacol Physiol. 35(5-6):586-593. Valenti G, Procino G, Tamma G, Carmosino M, Svelto M. 2005. Minireview: aquaporin 2 trafficking. Endocrinology. 146(12):5063-5070. Van den Dungen HM, Buijs RM, Pool CW, Terlou M. 1982. The distribution of vasotocin and isotocin in the brain of the rainbow trout. J Comp Neurol. 212(2):146-157. Wang W, Li C, Summer S, Falk S, Schrier RW. 2010. Interaction between vasopressin and angiotensin II in vivo and in vitro: effect on aquaporins and urine concentration. Am J Physiol Renal Physiol. 299(3):577-584. Warne JM, Balment RJ. 1995. Effect of acute manipulation of blood volume and osmolality on plasma [AVT] in seawater flounder. Am J Physiol. 269 (52):1107-1112. Warne J. 2002. The role of arginine vasotocin in teleost fish osmoregulation. Symp Soc Exp Biol. (54):83-95. Yamada T, Nishio T, Sano Y, Kawago K, Matsuda K, Uchiyama M. 2008. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata. Gen Comp Endocrinol. 157(1):63-69. Young LJ, Wang Z, Cooper TT, Albers HE. 2000. Vasopressin (V1a) receptor binding, mRNA expression and transcriptional regulation by androgen in the Syrian hamster brain. J Neuroendocrinol. 12(12):1179-1185. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53947 | - |
| dc.description.abstract | 血管加壓素(AVP)是由大腦下視丘神經元製造,儲存在腦下垂體後葉的荷爾蒙,先前許多研究發現其在哺乳動物體內的功能,主要是參與腎小管中水分的再吸收以及離子的運輸,也有研究發現AVP會調節細胞內的酸鹼值。而AVP的同源基因加壓催產素 (AVT),存在於非哺乳類的脊椎動物及兩生類體內,先前研究已知AVT具有協助魚類適應不同離子濃度與滲透壓環境的功能,但是如何調控魚類體內離子與滲透壓的詳細路徑仍然有待釐清。本研究利用斑馬魚為模式物種,探討AVT在斑馬魚體內調節離子運輸的機制。(為防止研究構想被國外競爭者抄襲,實驗細節內容請與指導教授黃鵬鵬博士連繫) 。總結以上實驗結果,AVT在斑馬魚體內調節離子吸收的功能上具有重要角色。 | zh_TW |
| dc.description.abstract | Arginine vasopressin (AVP), a hormone produced by neurosecretory cells in the posterior pituitary gland of the brain, is one of the neurohypophysial peptides involved in water reabsorption and ion regulation in mammalian kidneys. Its homologous oligopeptide arginine vasotocin (AVT), which is normally expressed in non-mammalian vertebrates and amphibians, has also been proposed to be involved in regulating the ionic/osmotic homeostasis of body fluid in fish; however, the detailed regulatory pathways remain to be clarified. Zebrafish was used as animal models in the present study to test the hypothesis if AVT controls ion transport mechanisms through regulating the expression of the related ion transporters. (To prevent the proposed research ideas from being copied by other competitor labs, please contact Dr. P. P. Hwang for the detailed data). Taken all together into account, AVT appears to play an important role in zebrafish body fluid ionic homeostasis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:34:18Z (GMT). No. of bitstreams: 1 ntu-104-R02b45002-1.pdf: 3288709 bytes, checksum: b70344dfeb5311a1df2ea263108d5a3a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Table of contents 口試委員會審定書…………………………………………………………………………….I 謝辭………………………………………………………………………………………...II 中文摘要…………………………………………………………………………………...III Abstract…………………………………………………………………………………….IV Table of contents………………………………………………………......................V Introduction………………………………………………………………………………….1 Body fluid iono- and osmoregulation in animals…………………………......................1 Role of neurohypophysial peptides in iono- and osmoregulation…………...................2 Functions of AVP in mammals……………………………………………....................3 Functions of AVT in non-mammals……………………………………….....................4 Purpose..……………………………………………………………......................5 Materials and methods……………………………………………….........................7 Animals………………………………………..…………………………………….7 Preparation of total RNA………………………………………………………………..7 Reverse-transcription polymerase chain reaction analysis………………………………7 Quantitative real-time PCR………………………………………………………….…..8 Microinjection of avt antisense morpholino nucleotide and capped mRNA………….8 Acclimation experimentas……………………………………………………………..9 Whole-mount immunocytochemistry……………………………………………………9 In situ hybridization…………………………………………………………………….10 Western blot analysis…………………………………………………………………11 Measurement of whole body Na+, Cl- , and Ca2+contents………………………………12 Measurement of surface H+ gradients..……………………………………………….12 Statistical analysis……………………………………………………………………13 Results……………………………………………………………………………………..14 The mRNA expression patterns of avt and its receptors in zebrafish tissues………….14 Effects of different environmental ion concentrations on mRNA expressions of avt and its receptors in 3-dpf zebrafish embryos ……………..................................................14 Effects of different doses of avt MO on body length and mortality in 3-dpf zebrafish embryos…………………………………….…………................................15 Effects of avt knockdown on expressions of ion transporters in 3-dpf zebrafish embryos…………………………………………………………………………......15 Effects of avt knockdown on ionocyte progenitor cells……………………………..16 Effects of avt MO on whole body ion contents and H+ secretion in 3-dpf zebrafish embryos………………………………………………………………………………..16 Effects of avt cRNA on defects caused by the avt MO in 3-dpf zebrafish embryos……………..……………………………………………………………….17 Discussion……………………………………………………………………………………18 Distribution of avt and its receptors……………………………………………………18 Effects of environmental ion levels on the expression of avt and its receptors……….20 Effectiveness and specificity of avt MO…………………………………………….21 Actions of AVT on ion transport mechanisms………………………………..…...21 The interaction between AVT and other hormones…………………………………..24 Conclusion………….…………………………………………………………….....25 Perspective……………….….……………………………………………………….25 References…………………………………………………………………………………..27 Tables………………………………………………………………………………………..37 Table 1. Specific primer sequences of qRT-PCR………………………………………37 Table 2. ionic compositions (mM) in the artificial freshwater………………………....38 Figures………………………………………………………………………………………39 Fig. 1. qRT-PCR analysis of avt transcripts and its receptors expression patterns in different tissues of adult zebrafish……………………………………….………..39 Fig. 2. Effects of different environmental ion concentrations on mRNA expressions of avt and its receptors in 3-dpf zebrafish embryos………………...……………..………40 Fig. 3. The effectiveness and specificity of the avt MO……………………………….41 Fig. 4. Effects of different dosages avt MO on body length and mortality in 3-dpf zebrafish embryos…………….………………………………………………………...42 Fig. 5. Effects of avt knockdown on expressions of ion transporters in 3-dpf zebrafish embryos.…………………………………………………..…………………………43 Fig. 6. Effects of the avt knockdown on cell densities of NCCC, HRC, and NaRC in 3-dpf zebrafish embryos………………………………………………………………44 Fig. 7. Effects of avt knockdown on expressions of p63, foxi3a and gcm2 in 3-dpf zebrafish embryos……………………..………………………..………………………45 Fig. 8. Effects of the avt MO on whole body ion contents and H+ secretion in 3-dpf zebrafish embryos………………………………………………………………………46 Fig. 9. Effects of the avt MO and cRNA on NCC2b and HA mRNA expressions in 3-dpf zebrafish embryos………………………………………………………………..47 | |
| dc.language.iso | en | |
| dc.subject | 加壓催產素 | zh_TW |
| dc.subject | 氫離子幫浦 | zh_TW |
| dc.subject | 反義核酸 | zh_TW |
| dc.subject | 離子細胞 | zh_TW |
| dc.subject | 鈉氯共同運輸蛋白 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | HA | en |
| dc.subject | NCC2b | en |
| dc.subject | ionocytes | en |
| dc.subject | morpholino | en |
| dc.subject | zebrafish | en |
| dc.subject | arginine vasotocin | en |
| dc.title | 加壓催產素在斑馬魚離子調節機制中扮演的角色 | zh_TW |
| dc.title | The role of arginine vasotocin in control of ion regulation in zebrafish (Danio rerio) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張清風(Ching-Fong Chang),林豊益(Li-Yih Lin),曾庸哲(Yung-Che Tseng),王永松(Yung-Song Wang) | |
| dc.subject.keyword | 加壓催產素,斑馬魚,反義核酸,離子細胞,鈉氯共同運輸蛋白,氫離子幫浦, | zh_TW |
| dc.subject.keyword | arginine vasotocin,zebrafish,morpholino,ionocytes,NCC2b,HA, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
