請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53934
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡宛珊(Wan-Shan Tsai) | |
dc.contributor.author | Yi Chu | en |
dc.contributor.author | 儲逸 | zh_TW |
dc.date.accessioned | 2021-06-16T02:33:55Z | - |
dc.date.available | 2016-07-31 | |
dc.date.copyright | 2015-07-31 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-28 | |
dc.identifier.citation | [1] Ayenu-Prah, A. Y., & Attoh-Okine, N. O. (2009). “Comparative study of Hilbert–Huang transform, Fourier transform and wavelet transform in pavement profile analysis.” Vehicle System Dynamics, 47(4), 437-456.
[2] Chow, V. T. (1959). “Open channel flow.” MacGraw-Hill Book Co. Inc.: New York. [3] Cheng, N. S., & Chiew, Y. M. (1998). “Pickup probability for sediment entrainment.” Journal of Hydraulic Engineering, 124(2), 232-235. [4] Chiew, F. H., Peel, M. C., Amirthanathan, G. E., & Pegram, G. G. (2005). “Identification of oscillations in historical global streamflow data using empirical mode decomposition.” Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, 53-62. [5] Cervantes, A. A. (2012). “Resuspension of E. coli under controlled flows and stream bottom sediments.” Master diss., University of Iowa. [6] Flandrin, P., Rilling, G., & Goncalves, P. (2004). “Empirical mode decomposition as a filter bank.” Signal Processing Letters, IEEE, 11(2), 112-114. [7] Franca, L.P., Hauke, G. and Masud,A. (2006). “Revisiting stabilized finite element methods for the advective–diffusive equation.” Comput. Methods Appl. Mech. Engrg, 195, 1560–1572 [8] Franceschini, S., & Tsai, C. W. (2010). “Application of Hilbert-Huang Transform method for analyzing toxic concentrations in the Niagara river.” Journal of Hydrologic Engineering, 15(2), 90-96. [9] Franceschini, S., & Tsai, C. W. (2010). “Assessment of uncertainty sources in water quality modeling in the Niagara River.” Advances in Water Resources,33(4), 493-503. [10] Franceschini, S., Tsai,C.W., M.Marani. (2012). “Point estimate methods based on Taylor Series Expansion – The perturbance moments method – A more coherent derivation of the second order statistical moment.” Applied Mathematical Modelling 36(11): 5445-5454. [11] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 454, No. 1971, pp. 903-995). The Royal Society. [12] Huang, N. E., Shen, Z., & Long, S. R. (1999). “A new view of nonlinear water waves: The Hilbert Spectrum 1.” Annual review of fluid mechanics, 31(1), 417-457. [13] Hsu, H. H., & Chen, C. T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79(1-2), 87-104. [14] Hassan, A. E. and Mohamed, M. M. (2003). “On using particle tracking methods to simulate transport in single-continuum and dual continua porous media.” Journal of Hydrology, 275 (3-4) 242–260. [15] Huang, N. E., & Long, S. R. (2003). A generalized zero crossing for local frequency determination. US Patent pending. [16] Huang, N. E., Wu, M. L. C., Long, S. R., Shen, S. S., Qu, W., Gloersen, P., & Fan, K. L. (2003). “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis.” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2037), 2317-2345. [17] Huang, N. E. and Wu, Z. (2008). “A review on Hilbert-Huang transform: method and its applications to geophysical studies.” Reviews of Geophysics, 46, RG2006 [18] Huang, N. E., Wu, Z., Pinzón, J. E., Parkinson, C. L., Long, S. R., Blank, K., ... & Chen, X. (2009). Reductions of noise and uncertainty in annual global surface temperature anomaly data. Advances in Adaptive Data Analysis, 1(03), 447-460. [19] Huang, Y., Schmitt, F. G., Lu, Z., & Liu, Y. (2009). Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Journal of Hydrology, 373(1), 103-111. [20] Hunter, J., Craig, P., and Phillips, H. (1993). 'On the use of random walk models with spatially variable diffusivity.' Journal of Computational Physics, 106(2), 366-376. [21] Kuai, K. Z. and Tsai, C.W. (2012). “Identification of varying time scales in sediment transport using the Hilbert–Huang Transform method.”Journal of Hydrology 420–421(0): 245-254. [22] Li, K. (1992). 'Point-estimate method for calculating statistical moments.'Journal of Engineering Mechanics, 118(7), 1506-1511. [23] Lin, Y.T., “Stochastic particle tracking modeling for sediment transport in extreme flow environments” M.S. thesis, Grad. Inst. Of Civ. Eng., Natl. Taiwan Univ., Taipei. [24] Molla, M. K. I., Rahman, M. S., Sumi, A., & Banik, P. (2006). “Empirical mode decomposition analysis of climate changes with special reference to rainfall data.” Discrete Dynamics in Nature and Society, 2006. [25] Man, C. (2007). “Stochastic modeling of suspended sediment transport in regular and extreme flow environments.” ProQuest. [26] Oh, J. (2011). “Stochastic particle tracking modeling for sediment transport in open channel flows.” State University of New York at Buffalo. [27] Oh,J., and Tsai,C.W. (2010) “A stochastic jump diffusion particle‐tracking model (SJD‐PTM) for sediment transport in open channel flows” Water Resources Research, 46(10) [28] Rosenblueth, E. (1975). “Point estimates for probability moments.” Proceedings of the National Academy of Sciences, 72(10), 3812-3814. [29] Rosenblueth, E. (1981). “Two-point estimates in probabilities.” Applied Mathematical Modelling, 5(5), 329-335. [30] Tsai,C. W.and Franceschini, S. (2005). “Evaluation of Probabilistic Point Estimate Methods in Uncertainty Analysis for Environmental Engineering Applications.” J. Environ. Eng., 131(3), 387–395. [31] Tsai, C. W., Man, C., and Oh, J. (2014). 'Stochastic particle based models for suspended particle movement in surface flows.' International Journal of Sediment Research, 29(2), 195-207. [32] Wu, F.C., and Lin, Y.C. (2002). 'Pickup probability of sediment under lognormal velocity distribution.' Journal of Hydraulic Engineering ASCE, 128(4), 438-442. [33] Wu, F. C., & Chou, Y. J. (2003). “Simulation of gravel‐sand bed response to flushing flows using a two‐fraction entrainment approach: Model development and flume experiment.” Water Resources Research, 39(8). [34] Wu, F. C., & Chou, Y. J. (2003). “Simulation of gravel‐sand bed response to flushing flows using a two‐fraction entrainment approach: Model development and flume experiment.” Water Resources Research, 39(8). [35] Wu, Z., & Huang, N. E. (2004). “A study of the characteristics of white noise using the empirical mode decomposition method.” In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences(Vol. 460, No. 2046, pp. 1597-1611). The Royal Society. [36] Wu, Z., and N. E Huang (2005). “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method.” COLA Technical Report 193. [37] Wu, Z., Huang, N. E, S. R. Long, and C.-K. Peng (2007) “On the trend, detrending, and the variability of nonlinear and non-stationary time series.” Proc. Natl. Acad. Sci. USA., 104, 14889-14894. [38] Wu. Z., Huang N. E. and X. Chen (2009). “The Multi-Dimensional Ensemble Empirical Mode Decomposition Method.” Advance in Adaptive Data Analysis, Vol. 1, No. 3, 339–372. [39] Wu, N.K.(2014).“Application of gambler's ruin problem and multi-state discrete-time markov chain to sediment transport modeling” M.S. thesis, Grad. Inst. Of Civ. Eng., Natl. Taiwan Univ., Taipei. [40] 田維婷,2003:氣候變遷對台灣地區地表水文量之影響。國立中央大學水文科學所碩士論文,桃園市。 [41] 張廷暐,2008:氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例。國立中央大學水文科學所碩士論文,桃園市。 [42] 鄭竣騰,2013:應用HHT分析洪水與乾旱特性之研究-以石門水庫入流量為例。私立淡江大學水資源及環境工程學系暨研究所碩士論文,新北市。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53934 | - |
dc.description.abstract | 本研究可分為河川流量分析和泥砂運動之模擬兩大方向,目的為探討流量及其泥砂顆粒在氣候變遷影響下流量和極端事件的變化情形。第一部份將Huang Transform (HHT)應用於台灣北部長時間的河川日流量資料,HHT為一種適用於非線性和非穩態時間序列的資料分析方法且可分為兩個部分:第一步為經驗模態分解法(Empirical Mode Decomposition)可將資料分成數個本質模態函數(Intrinsic Mode Function);第二步為希伯特轉換,將各個IMF轉換成時間-頻率-能量的頻譜,可同時分析單一事件在時間軸和頻率域的改變情形。
本研究採用能量權重公式計算隱含於IMF中的各個時間尺度和長時間的變化趨勢,接著由特定的幾個時間尺度做為韋伯公式的門檻值搭配HHT做頻率分析,以進一步了解極端事件發生次數改變之情形。 此外亦考量到原始資料中可能因測量上的誤差或各種因素導致資料帶有不確定性,由點估計(PEM)和蒙地卡羅法(MC)的不確定性分析方法搭配HHT,此舉不僅能得到原本定率的IMF也可得到每個IMF的信心區間增加IMF結果的可信度,也可比較出各個不確定性方法之間的差異性。 泥砂運動模擬則是採用隨機跳躍擴散粒子追蹤模型(Stochastic jump diffusion-particle tracking model),此模型包含三個基本元素:平均漂移項、紊流項和跳躍項,可用來模擬顆粒再不同流況中的運動情形,此外,考量到顆粒沉降到底床後再度懸浮的可能,本研究加入了pickup probability的機制模擬顆粒被帶起的情形,並由兩種不同顆粒的實驗數據做測試,發現粒徑較大也較重的顆粒並無法有效呈現出顆粒的軌跡。現地的模擬化簡了一些無法取得的參數,並由實際的流量資料搭配曼寧公式推得流速,長時間的模擬包含了隨時間變化速度項和頻率變化的探討,其中頻率變化的參數是由HHT的趨勢所推得,短時間則是比較隨機跳躍擴散模型(SJD)和隨機擴散模型(SD)在一颱風事件中顆粒由上游釋放之運動情形,並進一步推估實際可能到達水庫所需之時間。 | zh_TW |
dc.description.abstract | The Hilbert-Huang transform (HHT), a data analysis method for dynamic and nonlinear timeseries, is applied to our analysis of flow rates and temperatures of rivers in northern Taiwan. HHT consists of two independent analytical methods: empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). EMD will decompose the time series data into several independent intrinsic mode functions (IMFs) and then derive the trend from the whole data span. As the EMD suffers from the problem of mode mixing, a new developed noise-assisted method called ensemble empirical mode decomposition (EEMD) will be adopted. Next, Hilbert transform turns the derived IMFs into time-frequency-energy functions, designated as Hilbert spectrum.
An energy weighted measurement equation is adopted to calculate the hidden scales in the IMFs. The resulting time scales can range from a few months to decades and a long term trend. Furthermore, we combine the Weibull formula and HHT to estimate the occurrences number of extreme flow events per year. Results of frequency analysis can provide the change in extreme flow event occurrences under climate change. Meanwhile, uncertainty embedded in the flow rate data is also concerned. By using two kinds of Pont Estimate Methods and Monte Carlo simulation, one can obtain not only the derived IMFs and trend, but also uncertainty bands of the model predictions. The result of PEM show a little difference in the last few IMFs but give similar results as the Monte Carlo simulation. On the other hand, we simulate the particle movement in this area with the stochastic jump diffusion particle tracking model (SJD-PTM). Mechanism of resuspension is considered by the model of pickup probability. Two kinds of experimental data are tested here. It found that only the smaller and finer particles present a clear view of particle trajectories. Particles with larger diameter cannot be resuspended until the arrival of extreme events. Applications to the field data can be divided into long term simulation and an event based simulation (short period). Both include temporal velocity variation in the mean drift and frequency change in the Poisson process. Simulations with SJD-PTM will come out the ensemble means and variances of the particle trajectory. This result can be used to estimate the possible time for particles to reach the reservoir. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:33:55Z (GMT). No. of bitstreams: 1 ntu-104-R02521317-1.pdf: 2372541 bytes, checksum: 104d504da2aba31c6ecb63e1949e3efd (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF TABLES xiii Chapter 1 Introduction 1 1.1. Introduction 1 1.2. Background Information of Taiwan 3 1.3 Hypothesis-Climate Change 3 1.4 Objectives of this Study 4 1.5 Overview of Thesis 5 Chapter 2 Literature Review 6 2.1 Overview of the HHT 6 2.2 Study Method- Hilbert Huang Transform 8 2.2.1 Hilbert Huang Transform (HHT) 8 2.2.2 Empirical Mode Decomposition (EMD) 9 2.2.3 Hilbert Spectrum (HS) 10 2.3 Advanced development in Hilbert Huang Transform 11 2.3.1 Ensemble Empirical Mode Decomposition (EEMD) 11 2.3.2 Statistical Significance of IMFs 12 2.4 Particle Tracking Models 14 Chapter 3 Application of HHT to Analyzing Streamflow Data 15 3.1. Case study 1: Dahan River-Yifong Station 15 3.1.1 Data description of Dahan river 15 3.1.2 Significance test 17 3.1.3 Timescale Identification and IMFs 18 3.1.4 Hilbert Spectrum 21 3.2 Case Study 2: Daijia River-Cijiawan Station 23 3.2.1 Basic Data Description of Cijiawan River 23 3.2.2 Significance Test of Case Study 2: 24 3.2.3 Timescale Identification and IMFs of Case Study 2: 25 3.2.4 Hilbert Spectrum of Case Study 2: 27 3.3 Frequency Analysis 29 3.3.1 Frequency Analysis of Yifong Station-Case Study 1: 29 3.3.2 Frequency Analysis with HHT 31 3.3.3 Frequency Analysis of Cijiawan River-Case Study 2 34 3.4 Discussion & Summary 36 Chapter 4 Uncertainty Analysis Applications 38 4.1. Point Estimate Method (PEM) 38 4.1.1 Introduction of Point Estimate Method 38 4.1.2 Rosenblueth Method (RM) 39 4.1.3 Perturbance Moment Method (PMM) 41 4.2. Analysis of PEM 42 4.2.1 Analysis of PEM 42 4.2.2 Results and Discussions of PEM 43 4.3. Uncertainty analysis-Monte Carlo Simulation Method 49 4.3.1 Uncertainty analysis-Monte Carlo Simulation Method 49 4.3.2 Results and Discussions of Monte Carlo Simulation Method 52 4.4 Summary & Discussion 56 Chapter 5 Application to the Stochastic Particle Tracking Model (PTM) 58 5.1 Stochastic Jump Diffusion Particle Tracking Model 58 5.1.1 Stochastic Diffusion model 58 5.1.2 Stochastic Jump Diffusion model 59 5.1.3 Linear Form of Stochastic Jump Diffusion model 61 5.2 Resuspension for Sediment Entrainment 62 5.2.1 Pickup Probability for Sediment Entrainment 62 5.2.2 Pickup Probability under Log-Normal Velocity Distribution 63 5.3 Test for Experimental data 65 5.3.1 Experiment data 1 (Wu and Chou 2003) 65 5.3.2 Experiment data 2 (Cervants, 2012) 69 5.4 Applications to the Yifong Station 72 5.4.1 Rating curve for flow discharge 72 5.4.2 Model Comparison between Temporal Variation 74 5.4.3 Simulations for Frequency Variation (Long period) 77 5.4.4 Simulations for Event Based Flow (Short period) 79 5.5 Summary and Discussions 83 Chapter 6 Conclusions and Recommendation 85 6.1.1 Conclusions 85 6.1.2 Recommendation for Future Research 86 REFERENCES 88 APPENDIX 92 | |
dc.language.iso | en | |
dc.title | 以希伯特黃轉換及其不確定性分析探討氣候變遷下河川流量和泥砂運動之變化 | zh_TW |
dc.title | Modeling Change of Flowrate and Sediment Transport on a Changing Climate using Hilbert Huang Transform and Uncertainty Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳富春 余化龍 游景雲(Fu-Chun Wu Jiing-Yun You),余化龍(Hwa-Lung Yu),游景雲(Jiing-Yun You) | |
dc.subject.keyword | 希伯特黃轉換,頻率分析,不確定性分析,顆粒軌跡追蹤模型,泥砂運動, | zh_TW |
dc.subject.keyword | Hilbert Huang Transform,Frequency analysis,uncertainty analysis, particle tracking model,sediment transport, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。