Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53921
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍
dc.contributor.authorDong-Yi Wuen
dc.contributor.author吳東憶zh_TW
dc.date.accessioned2021-06-16T02:33:29Z-
dc.date.available2015-08-05
dc.date.copyright2015-08-05
dc.date.issued2015
dc.date.submitted2015-07-28
dc.identifier.citation[1] P. A. Flournoy, R. W. McClure, and G. Wyntjes, “White-Light Interferometric Thickness Gauge,” Appl. Opt., vol. 11, no. 9, p. 1907, Sep. 1972.
[2] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, Nov. 1991.
[3] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett., vol. 18, no. 21, p. 1864, Nov. 1993.
[4] J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin ISBS Int. Soc. Digit. Imaging Skin ISDIS Int. Soc. Skin Imaging ISSI, vol. 7, no. 1, pp. 1–9, Feb. 2001.
[5] 鄭乃嘉, “結合光學同調斷層掃描與共焦螢光顯微術之研究.” 國立台灣大學光電工程研究所, 2010.
[6] M. V. Klein and T. E. Furtak, Optics: Wiley New York, 1990.
[7] Fujimoto and Drexler, “Introduction to Optical Coherence Tomography,” in Optical Coherence Tomography, Drexler and Fujimoto, Eds. Springer Berlin Heidelberg, 2008, pp. 1–45.
[8] Rayleigh criterion. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/raylei.html.
[9] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6 edition. New York: Oxford University Press, 2006.
[10] K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara with A. Dubois, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt., vol. 43, no. 14, pp. 2874–2883, May 2004.
[11] 林耀聖, “全域式光學同調斷層掃描技術之研究.” 國立台灣大學光電工程研究所, 2013.
[12] R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol., vol. 77, no. 1, pp. 13–19, Jul. 1981.
[13] C. A. Burrus and J. Stone, “Single−crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett., vol. 26, no. 6, pp. 318–320, Mar. 1975.
[14] W. Drexler, Y. Chen, A. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh Resolution Optical Coherence Tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, Eds. Springer Berlin Heidelberg, 2008, pp. 239–279.
[15] K.-Y. Hsu, D.-Y. Jheng, Y.-H. Liao, T.-S. Ho, C.-C. Lai, and S.-L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett., vol. 24, no. 10, pp. 854–856, May 2012.
[16] Zeiss Objective EC Plan-Neofluar 40x/0.75 transmittance. Available: https://www.micro-shop.zeiss.com/?s=191483241fb3b94&l=en&p=us&f=o&a=v&m=s&id=440350-9903-000&o=.
[17] 王政凱, “摻鈦藍寶石寬頻晶體光纖光源之製備與檢測.” 國立台灣大學光電工程研究所, 2011.
[18] Human skin anatomy. Available: http://www.healthhype.com/human-skin-anatomy-structure-of-epidermis-and-dermis-layers.html.
[19] T. T. Sun and H. Green, “Immunofluorescent staining of keratin fibers in cultured cells,” Cell, vol. 14, no. 3, pp. 469–476, Jul. 1978.
[20] H. Shimizu, Shimizu’s textbook of dermatology, 1st edition. Japan: Hokkaido University Press/Nakayama Shoten, 2007.
[21] N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of Hair Follicle Size and Distribution in Different Body Sites,” J. Invest. Dermatol., vol. 122, no. 1, pp. 14–19, Jan. 2004.
[22] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1, no. 4, pp. 602–631, Aug. 2011.
[23] R. K. Wang and V. V. Tuchin, Advanced Biophotonics: Tissue Optical Sectioning. Taylor & Francis, 2013.
[24] H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol., vol. 51, no. 6, p. 1479, Mar. 2006.
[25] S. H. Lu, C. J. Chang, and C. F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt., vol. 52, no. 18, pp. 4400–4403, Jun. 2013.
[26] D. H. Sliney and J. Mellerio, Safety with Lasers and Other Optical Sources: A Comprehensive Handbook. Springer Science & Business Media, 2013.
[27] H. Salem and S. A. Katz, Alternative Toxicological Methods. CRC Press, 2003.
[28] K. P. Wilhelm, P. Elsner, E. Berardesca, and H. I. Maibach, Bioengineering of the Skin: Skin Imaging & Analysis. CRC Press, 2006.
[29] L. F. Hoyt, “New Table of the Refractive Index of Pure Glycerol at 20°C,” Ind. Eng. Chem., vol. 26, no. 3, pp. 329–332, Mar. 1934.
[30] J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol., vol. 39, no. 10, p. 1705, Oct. 1994.
[31] C. C. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, M. Y. Lin, J. W. Tjiu, and S. L. Huang, “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomed. Opt. Express, vol. 5, no. 9, p. 3001, Sep. 2014.
[32] R. Joshi, “Clues to histopathological diagnosis of treated leprosy,” Indian J. Dermatol., vol. 56, no. 5, p. 505, 2011.
[33] Stratum corneum structure. Available: http://www.reamin.co.uk/view-of-the-epidermis-and-the-uppermost-layer-of-the-skin-the-brick-and-mortar-structured-stratum-corneum/.
[34] J. Serup, G. B. E. Jemec, and G. L. Grove, Handbook of Non-Invasive Methods and the Skin, Second Edition. CRC Press, 2006.
[35] Blood vessels. Available: http://www.derm101.com/inflammatory/embryologic-histologic-and-anatomic-aspects/blood-vessels/.
[36] Sweat gland. Available: http://kids.britannica.com/comptons/art-120217/Two-of-the-exocrine-glands-within-human-skin-are-sweat?
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53921-
dc.description.abstract皮膚切片是醫師用來判斷皮膚疾病的準則,在皮膚切片上有分成鑽取活組織檢查(Punch biopsy)、刮削活組織檢查(Shave biopsy)、切口活組織檢查(Incisional biopsy),皮膚切片檢查是屬於侵入式的檢測方式,這樣的檢測方式會讓病患流血並且可能會留下疤痕,光學同調斷層掃描術(Optical coherence tomography; OCT)在生醫影像中占有很重要的地位,其在量測時不需要做特別的標記,能夠以非侵入的方式量出樣本3D立體影像結構。
在本論文中,利用實驗室生長之摻鈦藍寶石晶體光纖放大自發輻射(Amplified spontaneous emission; ASE)當作光源,架設Mirau-based 全域式同調斷層掃描系統,OCT系統之縱向解析度與光源的中心波長以及頻寬有關。利用兩顆1-W 520 nm之雷射二極體泵浦摻鈦藍寶石晶體光纖可以產生33-mW ASE,其所產生之ASE 中心波長為770 nm,頻寬為164 nm,這樣的光源特性能夠讓Mirau-based 全域式同調斷層掃描系統在空氣中縱向解析度為1.67 μm,在Mirau 物鏡是使用10x水鏡顯微物鏡,其在橫向解析度上為1.65 μm。
這套系統可以用來進行活體皮膚之量測,取得高解析度之3D立體結構,使用近紅外光光源,可以讓活體皮膚量測深度達到約300 μm,這樣高解析度之OCT影像可以用來量化角質層之厚度以及真皮層與表皮層之邊界,得到非侵入式活體皮膚3D影像。
zh_TW
dc.description.abstractSkin biopsy is the gold standard for doctors to diagnosis skin cancers. There are several ways to do a skin biopsy such as punch biopsy, shave biopsy, incisional biopsy. These methods are all invasive that make the patient bleed and leave scar. Optical coherence tomography (OCT) is one of the most important techniques in biomedical imaging realm. It is a noninvasive, label-free, and 3D imaging method.
In this thesis, a homemade Ti:sapphire crystal fiber amplified spontaneous emission (ASE) light source was used to build a Mirau-based full-field optical coherence tomography system. Using two 520-nm laser diodes to pump the Ti:sapphire crystal fiber, ASE centered at 770 nm with a bandwidth of 164 nm was generated. The Mirau-based full field OCT has an axial resolution of 1.67 μm in air. A 10x mirau objective was employed, and achieved a lateral resolution of 1.65 μm.
Using this system, we can measure in-vivo skin and get the high resolution 3D volume structure. Utilizing the low absorption light source, the penetration depth of in-vivo skin measurement is about 300 μm. We can use this high resolution OCT image to quantitize the thickness of stratum corneum and can distinguish the dermo-epidermal junction.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:33:29Z (GMT). No. of bitstreams: 1
ntu-104-R02941049-1.pdf: 6277712 bytes, checksum: f46201429451a7f2ae1245966c3a282c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
第二章 光學同調斷層掃描術在皮膚之應用 3
2.1 低同調干涉術 3
2.1.1 縱向解析度 10
2.1.2 橫向解析度 11
2.2 全域式光學同調斷層掃描術 13
2.3 摻鈦藍寶石晶體光纖寬頻光源 15
2.3.1 摻鈦藍寶石晶體光纖製備 15
2.3.2 摻鈦藍寶石晶體光纖放大自發輻射 17
2.3.3 摻鈦藍寶石晶體光纖光源模組 19
2.4 活體皮膚介紹 24
2.4.1 皮膚組織結構 25
2.4.2 皮膚光學特性 28
第三章 Ti:sapphire ASE光源Mirau-based全域式同調干涉系統架構與設計 30
3.1 Mirau 物鏡 30
3.1.1 干涉儀組件設計 33
3.1.2 Mirau物鏡元件 35
3.1.3 膜層設計 38
3.1.4 Mirau 物鏡製作 44
3.2 Mirau-based全域式同調干涉系統 47
3.3 全域式同調干涉系統特性分析 54
3.3.1 縱向解析度 54
3.3.2 橫向解析度 57
3.3.3 訊噪比 60
第四章 Mirau-based同調干涉影像計算與量測 62
4.1 干涉訊號處理 62
4.2 Mirau 全域式光學同調斷層活體皮膚量測影像 66
4.2.1 角質層 68
4.2.2 表皮層 77
4.2.3 表皮層與真皮層交界 79
4.2.4 真皮層 81
4.2.5 血管 83
4.2.6 汗腺 86
4.3 比較Ce:YAG與Ti:sapphire ASE之活體皮膚深度 90
第五章 結論與未來展望 94
參考文獻 96
dc.language.isozh-TW
dc.title高解析且高深度 Mirau 全域式同調斷層掃描之活體皮膚量測zh_TW
dc.titleIn-Vivo Skin Measurement Using High Definition Mirau-based Full Field Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭文娟,葉秉慧,黃千耀,邱政偉
dc.subject.keywordMirau 全域式光學同調斷層掃描,活體皮膚量測,角質層厚度,表皮層真皮層交界,zh_TW
dc.subject.keywordMirau-based full-field optical coherence tomography,In-vivo skin measurement,stratum corneum thickness,dermo-epidermal junction,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2015-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
6.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved