請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53918
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張慶源(Ching-Yuan Chang) | |
dc.contributor.author | Sz-Ying Tian | en |
dc.contributor.author | 田偲穎 | zh_TW |
dc.date.accessioned | 2021-06-16T02:33:24Z | - |
dc.date.available | 2025-12-31 | |
dc.date.copyright | 2015-07-31 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-28 | |
dc.identifier.citation | 1. Achten, W. M. J., L. Verchot, Y. J. Franken, E. Mathijs, V. P. Singh, R. Aerts and B. Muys (2008). “Jatropha bio-diesel production and use.” Biomass and Bioenergy 32(12): 1063-1084.
2. Asano, Y. and Sotoyamy, K. (1999). “Viscosity change in oil water food emulsions prepared using a membrane emulsification system.” Food Chemistry 66(3): 327-331. 3. Balat, M. and Balat, H. (2010). “Progress in biodiesel processing.” Applied Energy 87(6): 1815-1835. 4. Boro, J and Deka, D. (2012). “A review on biodiesel.” Journal of Biobased Materials and Bioenergy 6(2): 125-41. 5. Chang, M.C. (2010). “Application of the microwave assisted mechanical mixing processes and traditional heating on the production of tung-oil based biodiesel.” Master Thesis, Graduate Inst. Environm. Eng, National Taiwan University. 6. Chitra, P., P. Venkatachalam, A. Sampathrajan (2005). “Optimisation of experimental conditions for biodiesel production from alkali-catalysed transesterification of Jatropha curcus oil.” Energy for Sustainable Development 9(3): 13-18. 7. Choudhury, H. A., R. S. Malani and V. S. Moholkar (2013). “Acid catalyzed biodiesel synthesis from Jatropha oil: Mechanistic aspects of ultrasonic intensification.” Chemical Engineering Journal 231: 262-272. 8. Colucci, J. A., E. E. Borrero., and Fabio Alape (2005). “Biodiesel from an Alkaline Transesterification Reaction of Soybean Oil Using Ultrasonic Mixing.” Journal of the American Oil Chemists' Society 82(7): 525-530. 9. Demirbas, A. (2005). “Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods.” Progress in Energy and Combustion Science 31(5-6): 466-487. 10. Deng, X., Z. Fang and Y.H. Liu. (2010). “Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process.” Energy Conversion and Management 51(12): 2802-2807. 11. Dwivedi, G. and M.P. Sharma (2014). “Prospects of biodiesel from Pongamia in India” Renewable and Sustainable Energy Reviews 32: 114–122. 12. EPA (2002), “A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions.” 13. Harvey, A. P., M. R. Mackley and T. Seliger (2003). 'Process intensification of biodiesel production using a continuous oscillatory flow reactor.' Journal of Chemical Technology & Biotechnology 78(2-3): 338-341. 14. Jain, S. and M. P. Sharma (2010a). “Prospects of biodiesel from Jatropha in India: A review.” Renewable and Sustainable Energy Reviews 14(2): 763-771. 15. Jain, S. and M. P. Sharma (2010b). “Biodiesel production from Jatropha curcas oil.” Renewable and Sustainable Energy Reviews 14(9): 3140–3147. 16. Jain, S., M.P. Sharma and S. Rajvanshi (2011). “Acid base catalyzed transesterification kinetics of waste cooking oil” Fuel Processing Technology 92, (1): 32–38. 17. Janet L. Sawin and Freyr Sverrisson, “可再生能源2014全球現狀報告” REN 21 18. Ji, J., J. Wang, Y. Li, Y. Yu and Z. Xu (2006). “Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation.” Ultrasonics 44 Suppl 1: 411-414. 19. Knothe, G. (2009). “Improving biodiesel fuel properties by modifying fatty ester composition” Energy & Environmental Science 2(7): 759-766. 20. Linstromberg, W.W. and Baumbarten, H.E. (1970). “Organic chemistry: A brief course (College)” DC Heath & Co., Lexington MA. 21. Luque de Castro MD and F. Priego Capote (2007). “Analytical applications of ultrasound.” Elsevier, Amsterdan. 22. Ma, F., L. D. Clements and M. A. Hanna (1999). “The efect of mixing on transesterification of beef tallow.” Bioresource Technology 69(3): 289-293. 23. Ma, F. and M. A. Hanna (1999). “Biodiesel production: a review.” Bioresource Technology 70(1): 1-15. 24. Manh, D.V., Y.H. Chen, C.C. Chang, C.Y. Chang, C.V. Minh and H.D. Hanh (2012). “Parameter evaluation of biodiesel production from unblended and blended Tung oils via ultrasound-assisted process.” Journal of the Taiwan Institute of Chemical Engineers 43(3): 368-373. 25. Meher, L., D. Vidyasagar and S. Naik (2006). “Technical aspects of biodiesel production by transesterification—a review.” Renewable and Sustainable Energy Reviews 10(3): 248-268. 26. Noureddini, H., D. W. H., and M.R. Gutsman (2004). “A Continuous Process for the Glycerolysis of Soybean Oil.” Journal of the American Oil Chemists' Society 81(2): 203-207. 27. Patil, P. D. and S. Deng (2009). “Optimization of biodiesel production from edible and non-edible vegetable oils.” Fuel 88(7): 1302-1306. 28. Peterson, C. L., J. L. Cook, J. C. Thompson, J. S. Taberski (2002). “Continuous flow biodiesel production.” American Society of Agricultural Engineers 18(1): 5-11. 29. Sahoo, P. K. and L. M. Das (2009). “Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils.” Fuel 88(9): 1588-1594. 30. Sheehan, J., V. Camobreco, J. Duffield, M. Graboski and H. Shapouri (1998). “Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus.” A national laboratory of the U.S. Department of Energy of National Renewable Energy Laboratory. 31. Romano, S. D. and Sorichetti, P. A. (2011). “Dielectric Spectroscopy in Biodiesel Production and Characterization” Springer-Verlag London. 32. Singh, A. K., S. D. Ferando, and R. Hernandez (2007). “Base-Catalyzed Fast Transesterification of Soybean Oil Using Ultrasonication.” Energy & Fuels 21(2): 1161-1164. 33. Somnuk, K., P. Smithmaitrie and G. Prateepchaikul (2013). “Optimization of continuous acid-catalyzed esterification for free fatty acids reduction in mixed crude palm oil using static mixer coupled with high-intensity ultrasonic irradiation.” Energy Conversion and Management 68: 193-199. 34. Syam, A.M., R. Yunus, T.I.M. Ghazi and T.C.S. Taw (2009). 'Methanolysis of Jatropha oil in the presence of potassium hydroxide catalyst.' Applied Sciences 9(17): 3161-3165. 35. Tiwari, K. A., A. Kumar and H. Raheman (2007). “Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process.” Biomass and Bioenergy 31(8): 569-575. 36. Urtiaga, A., E. Gorri and I. Ortiz (2006). “Pervaporative recovery of isopropanol from industrial effluents.” Separation and Purification Technology 49(3): 245-252. 37. Makareviciene, V., K. Kazancev and I. Kazanceva (2015). “Possibilities for improving the cold flow properties of biodiesel fuel by blending with butanol” Renewable Energy 75: 805-807. 38. Deshmane, V. G., P. R. Gogate and A. B. Pandit (2009). 'Ultrasound-assisted synthesis of biodiesel from palm fatty acid distillate.' Ind. Eng. Chem. Res 48(17): 7923-7927. 39. Vyas, A. P., N. Subrahmanyam and P. A. Patel (2009). “Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst.” Fuel 88(4): 625-628. 40. Vyas, A. P., J. L. Verma and N. Subrahmanyam (2010). “A review on FAME production processes.” Fuel 89(1): 1-9. 41. Wang, D.M. (2002). “On the development of pervaporation.” Bulletin of the College of Engineering, National Taiwan University: 119-127. 42. Zou, H. and M. Lei (2012). “Optimum process and kinetic study of Jatropha curcas oil pre-esterification in ultrasonical field.” Journal of the Taiwan Institute of Chemical Engineers 43(5): 730-735. 43. 李宗育(2005). “利用廢棄沙拉油製造生質柴油之研究。”高苑科技大學高分子環保材料所碩士論文。 44. 洪長春(2008). “生質柴油綠金的新趨勢–痲瘋樹。” 國研院-科技政策智庫3月25日。 45. 馬復京與游漢明 (2007). “以林木種子油脂生產生質柴油。” 林業研究專訊,14(3),22-25。 46. 楊少強(2007). “毒樹煉油綠金趨勢。” 商業周第1041期,166。 47. 鄧軒(2014) “利用異丙醇以超音波輔助程序產製痲瘋樹籽油生質柴油之研究”。碩士論文,國立臺灣大學環境工程硏究所,臺北市。 48. 謝志誠(2007). “生質柴油之品質與檢驗。” http://www.taiwan921.lib.ntu.edu.tw/mypdf/bd09.html | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53918 | - |
dc.description.abstract | 本研究以超音波(ultrasonic irradiation, UI)輔助程序將痲瘋油(jatropha oil, JO)進行兩階段轉酯化程序產製痲瘋生質柴油(jatropha oil biodiesel, JOB)。進行兩階段轉酯化反應之前,將麻瘋原油(raw jatropha oil, JOR)進行油品性質分析,分析項目包含有酸價(AV)、含水率(mW)、動黏度(KV)、密度(ρO)、熱值(H)和冷濾點(CFPP)。本研究在第一階段酯化反應中使用酯化條件為醇油莫耳比(MIPA/JOR) = 5、反應溫度(TE) = 120 ℃、酸觸媒硫酸體積(VH2SO4) = 1.02 mL、連續加入異丙醇和硫酸混合液流速(QE) = 1.5 mL/min、反應時間(tE) = 59.08 min、原料油(JOR) = 200 g。酯化後的油品(JO after esterification, JOE)進行油品性質分析。
在相同酯化條件後進行第二階段轉酯化,醇類分別使用異丙醇或甲醇進行轉酯化後,探討使用異丙醇或甲醇在不同轉酯化反應溫度(TT)、醇油莫耳比(MIPA/JOE 或 MMOH/JOE)和反應時間(tT)對於油品性質和生質柴油轉酯率(YF),並找出最適之轉酯化反應溫度、醇油莫耳比及反應時間。 使用異丙醇轉酯化中,轉酯化反應後的酸價比酯化後的酸價有些微的上升,增加醇油莫耳比能有效降低油品酸價。當TT = 80 ℃及tT = 180 min,轉酯化反應最適之醇油莫耳比為9,此時的轉酯率為96.06 %,酸價為0.429 mg KOH/g,動黏度為4.01 mm2/s,密度為872.47 kg/m3,熱值為29.88 MJ/kg和冷濾點為-3.5 ℃。當反應溫度在80 ℃時有最佳的酸價(最低)和轉酯率(最高),其他油品特性亦可以符合CNS 15072的標準規範。反應時間90分鐘有最好的油品性質,當反應時間增加酸價會有些許的上升,轉酯率有些微下降。 在TT = 60 ℃下使用甲醇進行轉酯化反應,最適醇油莫耳比為6,醇油莫耳比增加對降低酸價及增加轉酯率有限。反應時間在10分鐘以上的油品性質相似。反應時間10分鐘已經完成轉酯化反應,此時得到的轉酯率97.08 %,酸價0.097 mg KOH/g,動黏度4.40 mm2/s,密度881.50 kg/m3,熱值38.14 MJ/kg和冷濾點-1 ℃。使用甲醇作為轉酯化醇類比異丙醇反應時間較短,反應溫度較低,所需的醇油莫耳比較少,得到的酸價更低,但是冷濾點較高。 使用甲醇或異丙醇作為酯化反應時的醇類,得到的轉酯率和其他油品特性差異性並不大。轉酯化反應中使用甲醇的最適反應醇油莫耳比較低,反應溫度較低,反應時間也可以縮短,在酯化製程中使用異丙醇作為反應醇類,轉酯化過程中使用甲醇,一方面可以將異丙醇作為廢液回收使用,另一方面也可以達到CNS 15072的標準規範。 | zh_TW |
dc.description.abstract | In this study, jatropha oil was used in a two-stage transesterification process with assistance of ultrasound irradiation (UI) to manufacture jatropha-oil biodiesel (JOB). The main properties measured inclued, acid value (AV), water content (mW), kinematic viscosity (KV), density (ρO), heating value (H) and cold filter plugging point (CFPP). In the first-stage of esterification, the reaction conditions were set using including molar ratio of isopropanol (IPA) to raw jatropha oil (JOR) (MIPA/JOR) = 5, reaction temperature (TE) = 120 ℃, volume of H2SO4 (VH2SO4) = 1.02 mL, injection flow rate of mixture of IPA and H2SO4 (QE) = 1.5 mL/min, reaction time at constant TE (tE) = 59.08 min and input JOR = 200 g.
In order to observe the influence of alcohols on properties and yield (YF) of transesterification, the second-stage of transesterification was constracted by using either IPA or methanol (MOH) in different transesterification reaction temperature (TT), molar ratio of alcohol to product of esterification (JOE) (MIPA / JOE or MMOH / JOE) and reaction time (tT). Finally, the optimal temperature, molar ratio and reaction time of the transesterification reaction could be found. According to experimental result, AV of JOB with IPA is slightly higher than that of JOE. The AV of JOB decreases with increasing MIPA / JOE. At the conditions of TT = 80 ℃ and tT = 180 min with the optimal MIPA / JOE of 9, the yield is 96.06 % with AV = 0.429 mg KOH/g, KV = 4.01 mm2/s, ρO = 872.47 kg/m3, H = 29.88 MJ/kg and CFPP = -3.5 ℃. The best AV (lowest) and yield (highest) are achieved at TT = 80 ℃ with other properties satisfied with CNS 15072 standards. The best reaction time is 90 min. As reaction time further increases, AV rises a little and yield drops slightly. For transesterification with MOH at TT = 60 ℃, MMOH / JOE = 6 is the optimal condition. There is no evident impact on increasing yield and reducing AV by increasing MMOH/JOE. The oils made by transesterification with reaction times longer than 10 min are similar. At the conditions of TT = 60 ℃, MMOH / JOE = 6 and tT = 10 min, the biodiesel YF is 97.08 % with AV = 0.097 mg KOH/g, KV = 4.40 mm2/s, ρO = 881.50 kg/m3, H = 38.14 MJ/kg and CFPP = -1 ℃. Compared with IPA, the use of MOH needs shorten tT, lower TT and less MMOH / JOE. It produces JOB with lower AV, but higher CFPP. The properties and YF by using MOH or IPA as alcohol for esterification are similar. Because IPA can come from the waste stream, one may thus use IPA in the first-stage esterification, while MOH employ in the second-stage transesterification. This not only achieves waste recycling but also satisfies with CNS 15072 standard. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:33:24Z (GMT). No. of bitstreams: 1 ntu-104-R02541132-1.pdf: 1937127 bytes, checksum: 8844caf0408ec01f35d3d67a69b22a15 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 符號說明 xii 第一章 前言 1 1.1研究背景 1 1.2研究目的 2 1.3預期效益 2 第二章 文獻回顧 3 2.1 生質柴油 3 2.1.1生質柴油發展優勢 3 2.1.2 生質柴油製程原理與機制 7 2.1.3生質柴油優缺點 7 2.2 兩階段轉酯化反應 9 2.2.1 酸催化轉酯化反應 13 2.2.2 鹼催化轉酯化反應 15 2.3 超音波輔助技術 16 2.4 生質柴油性質及法規規範 20 2.5 痲瘋油特性 25 2.6 異丙醇之來源及特性 30 第三章 研究方法 32 3.1 研究流程 32 3.2 實驗方法 37 3.2.1 實驗油品、材料與設備 37 3.2.2 樣品配置 38 3.3 實驗步驟及流程 40 3.3.1 實驗流程 40 3.4 實驗系統 43 3.5 油品分析方法 44 3.5.1 液態超導核磁共振 44 3.5.2 脂肪酸異丙酯特性分析方法 44 3.5.3 GC/FID 模擬蒸餾 49 第四章 結果與討論 52 4.1 鹼催化轉酯化前油品特性 52 4.1.1 痲瘋樹籽油油品特性 52 4.1.2 連續式酸催化酯化後油品特性 52 4.2 利用異丙醇作為鹼催化轉酯化之醇類 53 4.2.1 醇油莫耳比對使用異丙醇連續式鹼催化轉酯化的影響 53 4.2.2 溫度對使用異丙醇連續式鹼催化轉酯化的影響 57 4.2.3反應時間對使用異丙醇批次鹼催化轉酯化的影響 60 4.3 利用甲醇作為鹼催化轉酯化之醇類 63 4.3.1 醇油莫耳比對使用甲醇批次鹼催化轉酯化之影響 63 4.3.2 反應時間對使用甲醇批次鹼催化轉酯化之影響 66 4.4 使用甲醇或異丙醇為兩階段轉酯化反應醇類之比較 68 4.5 不同油品之模擬蒸餾結果 73 第五章 結論與建議 119 5.1 結論 119 5.2 建議 120 參考文獻 121 附錄A. 酯化和轉酯化之升溫取線 126 附錄B. 實驗數據 128 | |
dc.language.iso | zh-TW | |
dc.title | 以超音波輔助半連續式痲瘋油轉酯化程序產製生質柴油 | zh_TW |
dc.title | Manufacture of Jatropha-oil Biodiesel via Semi-continuous Ultrasonic Irradiation Transesterification | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 柯淳涵(Chun-Han Ko),陳奕宏(Yi-Hung Chen) | |
dc.subject.keyword | 生質柴油,痲瘋油,兩階段轉酯化反應,甲醇,異丙醇,超音波, | zh_TW |
dc.subject.keyword | Biodiesel, Jatropha oil, Two-stage transesterification, Methanol, Isopropanol, Ultrasound, | en |
dc.relation.page | 131 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。