請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53916完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于明暉 | |
| dc.contributor.author | Yu-Kang Huang | en |
| dc.contributor.author | 黃宇康 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:33:20Z | - |
| dc.date.available | 2020-09-14 | |
| dc.date.copyright | 2015-09-14 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-28 | |
| dc.identifier.citation | 1. Gomaa A-I. Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. World Journal of Gastroenterology 2008;14(27):4300. 2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132(7):2557-76. 3. Dhanasekaran R, Limaye A, Cabrera R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med 2012;4:19-37. 4. Cabibbo G, Craxi A. Epidemiology, risk factors and surveillance of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2010;14(4):352-355. 5. Zhou L, Ding L, Yin P, et al. Serum metabolic profiling study of hepatocellular carcinoma infected with hepatitis B or hepatitis C virus by using liquid chromatography-mass spectrometry. J Proteome Res 2012;11(11):5433-42. 6. Fattovich G, Stroffolini T, Zagni I, et al. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology 2004;127(5):S35-S50. 7. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012;142(6):1264-1273 e1. 8. Wu HC, Wang Q, Yang HI, et al. Aflatoxin B1 exposure, hepatitis B virus infection, and hepatocellular carcinoma in Taiwan. Cancer Epidemiol Biomarkers Prev 2009;18(3):846-53. 9. Liu Y, Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 2010;118(6):818-24. 10. Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology 2004;127(5):S87-S96. 11. Lin CW, Lin CC, Mo LR, et al. Heavy alcohol consumption increases the incidence of hepatocellular carcinoma in hepatitis B virus-related cirrhosis. J Hepatol 2013;58(4):730-5. 12. Koh WP, Robien K, Wang R, et al. Smoking as an independent risk factor for hepatocellular carcinoma: the Singapore Chinese Health Study. Br J Cancer 2011;105(9):1430-5. 13. Pollicino T, Saitta C, Raimondo G. Hepatocellular carcinoma: the point of view of the hepatitis B virus. Carcinogenesis 2011;32(8):1122-32. 14. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009;373(9663):582-92. 15. Kenny RPHLC. 'Omic' technologies:genomics, transcriptomics,proteomics and metabolomics. 2011. 16. Huang Q, Tan Y, Yin P, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res 2013;73(16):4992-5002. 17. Zhang A, Sun H, Han Y, et al. Urinary metabolic biomarker and pathway study of hepatitis B virus infected patients based on UPLC-MS system. PLoS One 2013;8(5):e64381. 18. Beyoglu D, Idle JR. The metabolomic window into hepatobiliary disease. J Hepatol 2013;59(4):842-58. 19. Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 2009;15(2):431-40. 20. Woo HM, Kim KM, Choi MH, et al. Mass spectrometry based metabolomic approaches in urinary biomarker study of women's cancers. Clin Chim Acta 2009;400(1-2):63-9. 21. Carrola J, Rocha CM, Barros AS, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 2011;10(1):221-30. 22. Slupsky CM, Steed H, Wells TH, et al. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res 2010;16(23):5835-41. 23. Xie GX, Chen TL, Qiu YP, et al. Urine metabolite profiling offers potential early diagnosis of oral cancer. Metabolomics 2011;8(2):220-231. 24. Beger RD. A review of applications of metabolomics in cancer. Metabolites 2013;3(3):552-74. 25. Shariff MI, Gomaa AI, Cox IJ, et al. Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: a validation study. J Proteome Res 2011;10(4):1828-36. 26. Fitian AI, Nelson DR, Liu C, et al. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int 2014;34(9):1428-44. 27. Ryan D, Robards K, Prenzler PD, et al. Recent and potential developments in the analysis of urine: a review. Anal Chim Acta 2011;684(1-2):8-20. 28. Nagrath D, Caneba C, Karedath T, et al. Metabolomics for mitochondrial and cancer studies. Biochim Biophys Acta 2011;1807(6):650-63. 29. Beckonert O, Keun HC, Ebbels TM, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols 2007;2(11):2692-2703. 30. Zhang A, Sun H, Wu X, et al. Urine metabolomics. Clin Chim Acta 2012;414:65-9. 31. Saude EJ, Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 2007;3(1):19-27. 32. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clinical chemistry 1992;38(10):1933-1953. 33. Chan TM. Hepatitis B and Renal Disease. Curr Hepat Rep 2010;9(2):99-105. 34. Psychogios N, Hau DD, Peng J, et al. The human serum metabolome. PloS one 2011;6(2):e16957. 35. Zhang X, Tu S, Wang Y, et al. Mechanism of taurine-induced apoptosis in human colon cancer cells. Acta Biochim Biophys Sin (Shanghai) 2014;46(4):261-72. 36. El Agouza IM, Eissa SS, El Houseini MM, et al. Taurine: a novel tumor marker for enhanced detection of breast cancer among female patients. Angiogenesis 2011;14(3):321-30. 37. OuYang D, Xu J, Huang H, et al. Metabolomic profiling of serum from human pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis. Appl Biochem Biotechnol 2011;165(1):148-54. 38. Icard P, Poulain L, Lincet H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 2012;1825(1):111-6. 39. Hatzivassiliou G, Zhao F, Bauer DE, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005;8(4):311-21. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53916 | - |
| dc.description.abstract | 背景: 代謝體是人體代謝的最終產物,代謝物的改變能反應出生理異常,因此代謝物在癌症發展早期的偵測及診斷扮演重要的角色。本研究針對長期追蹤的B型肝炎帶原者,其為肝細胞癌之高危險群。透過代謝體分析平台,探討代謝分子和肝細胞癌發生的關係,藉以尋找可能的罹病風險預測標記。 材料方法: 本研究以一個包括5364名30歲以上的男性世代研究為基礎,分析355位B型肝炎帶原者及98位非帶原者的尿液檢體。第一階段研究係比對帶原者和非帶原者代謝小分子之分佈。在第二階段,針對B型肝炎帶原者進行巢式病例對照研究,納入分析170位在追蹤期間發生的肝細胞癌,對每名病例,本研究選取1-2名年齡和尿液收集時間匹配的無病世代成員做為對照個案。利用核磁共振技術探測尿液中代謝物,使用Wilcoxon rank test進行統計分析,再將和肝癌達顯著關係的代謝分子分成五分位數並用Mantel–Haenszel 檢定其變化趨勢,logistic regression model比較在校正干擾因子前後的劑量效應。 結果: 在24個辨認出來的代謝分子當中,有4個代謝分子(包含3-氨基異丁酸氨、甲尿乙內酰尿、甘胺酸及肌肝酸)和B型肝炎帶原狀態呈現顯著正向關係,但和肝細胞癌發生的關係不具統計顯著意義。另有3個代謝分子(包括苯乙酰甘氨酸、次黃嘌呤和托品酸)則是和B型肝炎帶原狀態呈正相關但和肝細胞癌的發生卻有反向的關係。檸檬酸、氧化三甲胺和牛磺酸和B型肝炎慢性感染無顯著關係,但是和肝細胞癌則有顯著相關。將這三個代謝分子切成五分位數,發現檸檬酸有正向的劑量效應,氧化三甲胺和牛磺酸雖然相較第一分位數都有下降的趨勢卻呈現U型相關。此結果在校正其他干擾因子後,並無改變。 結論: 本研究顯示檸檬酸、氧化三甲胺和牛磺酸可針對B型肝炎帶原者族群發展肝癌的過程作為生物標記。其中檸檬酸和肝癌有明確的正相關,而氧化三甲胺和牛磺酸雖然為負相關卻呈現U型的關係,則需要進一步的獨立研究。 | zh_TW |
| dc.description.abstract | Background: Metabolomics is the final downstream product of metabolism. Metabolomics alternations represent the aberrant of physiology, thus metabolomics plays a major role of early detection and diagnosis of cancer development. Present study focus on long term follow-up hepatitis B virus (HBV) carriers who are the high risk population of hepatocellular carcinoma (HCC). Investigating the relationship between metabolites and HCC through metabolomics analytic techniques enable to discover the potential biomarkers for predicting HCC risk. Materials and methods: Study subjects were obtained from a cohort of 5364 men aged over 30, including 355 HBV carriers and 98 non-carriers. During the first stage, we examined the difference of metabolites in HBV carriers and non-carriers group. Further, a nested case-control study design was conducted for HBV carriers, 170 HCC cases occurred during the follow-up. We matched control group for HCC among HBV carriers by age and beginning time of recruitment. Nuclear magnetic resonance (NMR) was applied to detect metabolites in urine samples. Wilcoxon rank test was used to perform univariate analysis. Those metabolites which significantly related to HCC were subsequently divided into five groups according to quintile cutoff points and Mantel–Haenszel was used to determine the trend of increasing quintile level. Finally, logistic regression model was adopted to compare the dose-response of metabolites before and after adjusting confounders. Results: A total of 24 metabolites was identified, 4 metabolites (3-aminoisobutyrate, N-methylhydantoin, glycine, creatinine) were positively correlated to HBsAg status but no statistical significance with HCC. Three metabolites (N-phenylacetylglycine, hypoxanthine, tropate) were found positively associated with HBsAg status while inversely associated with HCC. Three metabolites (citrate, taurine and trimethylamine N-oxide) were found related to HCC and were selected to further statistical analysis. According to quintile levels of three urinary metabolites, we found positive dose-response in citrate while decreasing trend was found in other two metabolites but represent a U-shape association. The result remain the same after adjustment of potential confounders. Conclusion: We found changes in metabolite profiles during transition from healthy HBV carrier status to HCC. Citrate has positive association with HCC for certain. Taurine and trimethylamine N-oxide have negative association but the U-shape relationship require a further confirmation by independent research. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:33:20Z (GMT). No. of bitstreams: 1 ntu-104-R02849042-1.pdf: 841140 bytes, checksum: f464bf04ecf0d51b108a579cec26b114 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Introduction 1 Global Distribution and Time Trend of HCC 1 Surveillance of HCC 1 Risk factors of HCC 1 Metabolomics in Discovery of Cancer Biomarkers 2 Metabolomics Analysis in Liver Diseases 3 Specific Aims 4 Material and Methods 6 Database 6 Study Subjects and Design 6 Pilot Study 6 NMR Analysis 6 NMR spectral preprocessing 7 Statistical analysis 7 Results 9 Pilot test 9 Baseline characteristics of study subjects 9 Urinary metabolomics profiling 9 Metabolites, Chronic HBV Infection, and HCC 9 Discussion 11 Storage of urine sample 11 Metabolites and HBV 12 Metabolites and HCC 12 References 14 FIGURE 1. NMR SPECTRUM OF URINARY METABOLITES FROM HBV CARRIER WITHOUT HCC 17 TABLE 1. DISTRIBUTION OF METABOLITES ACCORDING TO FOUR SCENARIOS 18 TABLE 2. BASELINE CHARACTERISTICS OF STUDY SUBJECTS 20 TABLE 3. METABOLITES, CHRONIC HBV INFECTION, AND HCC 21 TABLE 4. ODDS RATIOS OF HCC ACCORDING TO INCREASING QUINTILES OF URINARY METABOLITES 23 | |
| dc.language.iso | en | |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 尿液代謝體 | zh_TW |
| dc.subject | B 型肝炎 | zh_TW |
| dc.subject | hepatitis B virus | en |
| dc.subject | urinary metabolomics | en |
| dc.subject | hepatocellular carcinoma | en |
| dc.title | 尿液代謝產物和 B 型肝炎相關之肝細胞癌罹病的發生:前瞻性研究 | zh_TW |
| dc.title | Urinary Metabolic Profile and the Development of HBV- Related Hepatocellular Carcinoma: Prospective Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林靖愉 | |
| dc.contributor.oralexamcommittee | 曾宇鳳,許光宏 | |
| dc.subject.keyword | 尿液代謝體,B 型肝炎,肝細胞癌, | zh_TW |
| dc.subject.keyword | urinary metabolomics,hepatitis B virus,hepatocellular carcinoma, | en |
| dc.relation.page | 25 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-28 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 821.43 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
