請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范光照(Kuang-Chao Fan) | |
| dc.contributor.author | Li-Min Chen | en |
| dc.contributor.author | 陳立民 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:33:17Z | - |
| dc.date.available | 2020-08-05 | |
| dc.date.copyright | 2015-08-05 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-28 | |
| dc.identifier.citation | [1] Bosch JA, Coordinate Measuring Machines and Systems. 1995: CRC Press.
[2] Hansen HN, et al.,(2006) Dimensional Micro and Nano Metrology. CIRP Annals - Manufacturing Technology. 55(2): p. 721-743. [3] Taniguchi N,(2008) Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing. CIRP Annals - Manufacturing Technology. 32(2): p. 573-582. [4] Takamasu K, et al.,(1996) Basic Concepts of Nano-CMM (Coordinate Measuring Machine with Nanometer Resolution). China Bilateral Symposium on Advanced Manufacturing Engineering: p. 155-158. [5] Takamasu K, et al.,(1999 ) Development of Nano-CMM and Parallel-CMM. International Dimensional Metrology Workshop. [6] Takamasu K, et al.,(2000) FRICTION DRIVE SYSTEM FOR NANO-CMM. Proc. Mechatronics 2000. [7] Fujiwara M, Takamasu K, and Ozono S,(2003) EVALUATION OF PROPERTIES OF NANO-CMM BY THERMAL DRIFT AND TILT ANGLE. Proceedings,XVII IMEKO World Congress: p. 1794-1797. [8] G.N. Peggs AJL, S. Oldfield,(1999) Design for a Compact High-Accuracy CMM. CIRP Annals Manufacturing Technology. 48: p. 417-420. [9] Leach R, et al.,(2001) Advances in traceable nanometrology at the National Physical Laboratory. NANOTECHNOLOGY. 12: p. R1-R6. [10] Vermeulen MMPA, Rosielle PCJN, and Schellekens PHJ,(1998) Design of a High-Precision 3D-Coordinate Measuring Machine. CIRP Annals - Manufacturing Technology. 47: p. 447-450. [11] Ruijl TAM and Eijk Jv,(2003) A Novel Ultra Precision CMM based on Fundamental Design Principles. American Society for Precision Engineering. [12] Brand U, Kleine-Besten T, and Schwenke H,(2000) Development of a special CMM for dimensional metrology on microsystem components. Proc. of the 2000 Annual Meetimg of the ASPE: p. 361-364. [13] Schwenke H, et al.,(2001) Opto-tactile Sensor for 2D and 3D Measurement of Small Structures on Coordinate Measuring Machines. CIRP Annals - Manufacturing Technology. 50(1). [14] Schmidt I, et al.,(2007) Investigations and calculations into decreasing the uncertainty of a nanopositioning and nanomeasuring machine (NPM-Machine). Measurement Science & Technology. 18: p. 482-486. [15] Jäger G, et al.,(2009) The Metrological Basis and Operation of Nanopositioning and Nanomeasuring Machine NMM-1. Tm-Technisches Messen. 76: p. 227-234. [16] Teague EC,(1989) The National Institute of Standards and Technology molecular measuring machine project: Metrology and precision engineering design. Journal of Vacuum Science & Technology B. 7: p. 1898-1902. [17] Kramar J, et al.,(1999) Toward nanometer accuracy measurements. Proceedings of SPIE. 3677: p. 1017-1028. [18] Kramar JA,(2005) Nanometre resolution metrology with the Molecular Measuring Machine. Measurement Science & Technology. 16: p. 2121-2128. [19] Hocken RJ, Trumper DL, and Wang C,(2001) Dynamics and Control of the UNCC/MIT Sub-Atomic Measuring Machine. CIRP Annals - Manufacturing Technology. 50: p. 373-376. [20] Overcash JL, et al.,(2010) MEASUREMENTS USING THE HIGH ACCURACY ATOMIC FORCE MICROSCOPE AND THE SUB-ATOMIC MEASURING MACHINE Proc. of the 2010 Annual Meetimg of the ASPE. [21] Küng A, Meli F, and Thalmann R,(2007) Ultraprecision micro-CMM using a low force 3D touch probe. Measurement Science & Technology. 18: p. 319-327. [22] Chu C-L, et al.,(2013) Development of a micro-CMM with scanning touch probe and high precision coplanar platform Proc. of SPIE. 8916. [23] Chu C-L and Fan S-H,(2006) A novel long-travel piezoelectric-driven linear nanopositioning stage. Precision Engineering. 30(1): p. 85-95. [24] ZEISS(http://www.zeiss.com) [25] Mitutoyo(http://www.mitutoyo.com) [26] Panasonic(http://industrial.panasonic.com) [27] Wang H-Y, et al.,(2014) A Long-Stroke Nanopositioning Control System of the Coplanar Stage. IEEE/ASME TRANSACTIONS ON MECHATRONICS. 19: p. 348-356. [28] Ruiji T,(2001) Ultra Precision Coordinate Measuring Machine - Design, Calibration and Error Compensation. PhD thesis, Delft University of Technology. [29] Donker R, et al.,(2010) ISARA 400: ENABLING ULTRA-PRECISION COORDINATE METROLOGY FOR LARGE PARTS. Proc. of 10th Int'l Symposium on Measurement and Quality Control, Osaka, Japan. [30] Fan KC, et al.,(2007) The Structure Design of a Micro-precision CMM with Abbé Principle Proceedings of the 35th International MATADOR Conference: p. 297-300.r02522 [31] Ke Z-Y,(2010) Design and assembly methodology of the structure of high precision 3-axis linear stage in nanometer accuracy. National Taiwan University Master Thesis. [32] Cheng F and Fan K-C,(2011) Linear diffraction grating interferometer with high alignment tolerance and high accuracy. APPLIED OPTICS 50(22): p. 4550-4556. [33] Loewen E,(2005) Diffraction Grating Handbook. [34] Nanomotion AB2 Driver User Manual. [35] Huang C-M,(2012) Fabrication of a tactile Scanning Probe for Micro/Nano CMM National Taiwan University Master Thesis [36] Harding K, Handbook of Optical Dimensional Metrology. 2013: CRC Press. [37] Edlén B,(1966) The Refractive Index of Air. Metrologia. 2. [38] Birch KP and Downs MJ,(1993) An Updated Edlen Equation for the Refractive Index of Air Metrologia. 30. [39] Ciddor PE,(1996) Refractive index of air: new equations for the visible and near infrared. Applied Optics. 35(9): p. 1566-1573. [40] Crosdale F and Palum R,(1990) Wavelength control of a diode laser for Distance Measuring Interferoineuy. SPIE Proceedings. 1219. [41] Zhmud AA,(2001) Differential Method of Diode Laser Wavelength Stabilization. Japanese Journal of Applied Physics. 40. [42] Brasunas JC,(2002) A simple etalon-stabilized visible laser diode. Measurement Science and Technology. 13(8): p. N67. [43] Dobosz M,(2007) Distance measuring interferometer with zerodur based light frequency stabilization. Recent Advances in Mechatronics: p. 2007. [44] Dobosz M and Kożuchowski M,(2012) Frequency stabilization of a laser diode by means of an optical wedge etalon. Measurement Science and Technology. 23(3): p. 035202. [45] Joo K-N, et al.,(2011) Real-time wavelength corrected heterodyne laser interferometry. Precision Engineering. 35(1). [46] VU TT, MAEDA Y, and AKETAGAWA M, Homodyne interferometer using iodine frequency stabilized laser diode, in 38th MATADOR Conference. 2015. [47] SIOS Meßtechnik GmbH (http://sios.de) [48] Bryan J,(1990) International Status of Thermal Error Research (1990). CIRP Annals - Manufacturing Technology. 39(2): p. 645-656. [49] Huang C-M, Liao B-H, and Fan K-C. A contact probe using Michelson interferometers for CMMs in Proc. of SPIE. 2013. [50] Bos EJC,(2011) Aspects of tactile probing on the micro scale. Precision Engineering. 35(2): p. 228-240. [51] Aoyama H, et al.,(1989) A New Method for Detecting the Contact Point between a Touch Probe and a Surface. CIRP Annals - Manufacturing Technology. 38(1): p. 517-520. [52] Savio E, Chiffre LD, and Schmitt R,(2007) Metrology of freeform shaped parts Annals of the CIRP. 56(2): p. 810-835. [53] Xiong Z and Li Z,(2003) Probe Radius Compensation of Workpiece Localization. Transactions of the ASME. 125: p. 100-104. [54] Woźniak A, Mayer JRR, and Bałaziński M,(2009) Stylus tip envelop method: corrected measured point determination in high definition coordinate metrology. The International Journal of Advanced Manufacturing Technology. 42(5-6): p. 505-514. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53914 | - |
| dc.description.abstract | 本論文以微型三次元量測儀為機床,研究平台定位感測器的穩定度及建立恆溫環境。
微型三次元量測儀之平台以二極體雷射麥克森干涉儀為定位感測器,其定位準確的決定性參數為雷射波長。本文開發一套完整的繞射式波長補償模組及其數學模型,即時回授波長至感測器。 精密量測儀器須置於恆溫環境,傳統無塵室建造成本過高、耗能、操作人員為不穩定發熱源,甚至是市售恆溫箱亦有笨重及振動過大缺點。本文利用半導體致冷片以自然沈降氣流提供微型三次元量測儀恆溫環境,優點為成本低廉、可攜性高,可應用於任何精密儀器,恆溫效果達20.010±0.014℃(k=2),優於ISO一級實驗室標準。在恆溫環境下,雷射波長準確度和穩定度可達10-6數量級。 完成整合微型三次元量測儀,即實機以觸發、掃描量測工件,對量測方法及結果均有若干討論。 | zh_TW |
| dc.description.abstract | This thesis mainly researches on Micro-CMM, including the stability of laser diode interferometer and the development of a constant temperature chamber.
Micro-CMM adopts laser diode Michelson interferometers as displacement sensors. Laser wavelength is the decisive parameter of its accuracy. Therefore, an integrated wavelength compensator mathematics model and hardware were fully developed. Environment stabilization is essential for any precision instruments. Conventional clean room costs too high and consumes much energy; commercial constant temperature chamber is too bulky in size and involves much vibration. A portable constant temperature chamber was developed in this thesis. Cheap TEC coolers are installed on the top of the chamber and cool the environment by natural convection, which contains no vibration. Temperature stability can achieve 20.010±0.014℃(k=2), which is better than ISO standard for Class I metrology room. Under constant temperature environment, accuracy and stabilization of laser wavelength can achieve an order of 10-6. Furthermore, there are some Micro-CMM measurements, including probe trigger and scanning. Several practices are shown in this thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:33:17Z (GMT). No. of bitstreams: 1 ntu-104-R02522722-1.pdf: 6506456 bytes, checksum: c86c7768d4b8d018083974574e7cc8cb (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表格目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 4 1.3 研究內容概要 19 第二章 微型三次元量測儀整體架構 20 2.1 共平面平台 20 2.1.1 共平面平台設計 20 2.2 寶塔式橋架配重主軸 21 2.2.1 寶塔式橋架結構 21 2.2.2 配重式主軸 23 2.3 線性繞射光柵干涉儀 24 2.3.1 量測原理 25 2.3.2 光柵繞射與都卜勒頻移 25 2.3.3 線性光柵尺 28 2.4 多自由度量測系統 (MDFMS) 29 2.4.1 麥克森干涉儀量測原理 30 2.4.2 自動視準儀原理 32 2.4.3 波長補償原理 33 2.5 Nanomotion超音波馬達簡介 33 2.5.1 Nanomotion超音波馬達 33 2.5.2 超音波馬達驅動器─AB2 driver 36 2.6 接觸式掃描探頭 39 2.7 高精度電子恆溫箱 41 第三章 波長補償模組之理論模型與實驗驗證 42 3.1 波長補償相關文獻回顧 42 3.2 波長補償模組光路 46 3.3 波長補償模組原理 46 3.4 波長補償數學模型 47 3.5 波長補償模型驗證實驗 48 3.6 量測不確定度估計 53 第四章 無振動微型電子恆溫腔之研製 55 4.1 恆溫箱各部元件的選擇 56 4.1.1 制冷功率計算 56 4.2 致冷晶片的選擇 58 4.3 電源供應器的選擇 58 4.4 溫度感測器的選擇 59 4.4.1 電阻式溫度感測器 60 4.5 恆溫箱系統架設 61 4.6 系統識別實驗 63 4.7 PID控制理論 64 第五章 恆溫系統下各感測器校正 69 5.1 麥克森干涉儀校正 69 5.2 探頭矩陣校正 74 5.2.1 探頭矩陣定義 74 5.2.2 矩陣參數校正 76 第六章 量測物件的方法與實驗 82 6.1 觸發量測 82 6.1.1 觸發點判別 82 6.1.2 觸發量測物件實驗 85 6.2 掃描量測 87 第七章 結論與未來展望 99 7.1 結論 99 7.2 未來展望 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 麥克森雷射干涉儀 | zh_TW |
| dc.subject | 三次元量測儀 | zh_TW |
| dc.subject | 恆溫腔 | zh_TW |
| dc.subject | Michelson Laser Interferometer | en |
| dc.subject | CMM | en |
| dc.subject | Constant Temperature Chamber | en |
| dc.title | 微型三次元量測儀在高精度恆溫環境下之研究 | zh_TW |
| dc.title | Research on Micro Coordinate Measuring Machine
Under High Accuracy Constant Temperature Chamber | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉建宏(Chien-Hung Liu),朱志良(Chih-Liang Chu) | |
| dc.subject.keyword | 三次元量測儀,麥克森雷射干涉儀,恆溫腔, | zh_TW |
| dc.subject.keyword | CMM,Michelson Laser Interferometer,Constant Temperature Chamber, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
