Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53895
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑(Yi-You Huang)
dc.contributor.authorXuan-Ling Hsuen
dc.contributor.author許宣翎zh_TW
dc.date.accessioned2021-06-16T02:32:43Z-
dc.date.available2022-08-01
dc.date.copyright2020-08-10
dc.date.issued2020
dc.date.submitted2020-08-05
dc.identifier.citation[1] O. Al Gwairi, L. Thach, W. Zheng, N. Osman, P.J. Little, Cellular and molecular pathology of age-related macular degeneration: potential role for proteoglycans, Journal of ophthalmology, 2016 (2016).
[2] M. Zarbin, Age-related macular degeneration: review of pathogenesis, European journal of ophthalmology, 8 (1998) 199-206.
[3] W.L. Wong, X. Su, X. Li, C.M.G. Cheung, R. Klein, C.-Y. Cheng, T.Y. Wong, Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis, The Lancet Global Health, 2 (2014) e106-e116.
[4] S.-J. Chen, C.-Y. Cheng, K.-L. Peng, A.-F. Li, W.-M. Hsu, J.-H. Liu, P. Chou, Prevalence and associated risk factors of age-related macular degeneration in an elderly Chinese population in Taiwan: the Shihpai Eye Study, Investigative ophthalmology visual science, 49 (2008) 3126-3133.
[5] C.E. Willoughby, D. Ponzin, S. Ferrari, A. Lobo, K. Landau, Y. Omidi, Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function – a review, Clinical Experimental Ophthalmology, 38 (2010) 2-11.
[6] A.V. Ljubimov, Cell Therapy for Age-Related Macular Degeneration: A New Vision for the Bone Marrow?, Molecular Therapy, 25 (2017) 832-833.
[7] M.A. Zarbin, Current concepts in the pathogenesis of age-related macular degeneration, Archives of ophthalmology, 122 (2004) 598-614.
[8] J. Ambati, B.K. Ambati, S.H. Yoo, S. Ianchulev, A.P. Adamis, Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies, Survey of ophthalmology, 48 (2003) 257-293.
[9] R.O. Schlingemann, Role of growth factors and the wound healing response in age-related macular degeneration, Graefe's archive for clinical and experimental ophthalmology, 242 (2004) 91-101.
[10] J.C. Booij, D.C. Baas, J. Beisekeeva, T.G. Gorgels, A.A. Bergen, The dynamic nature of Bruch's membrane, Progress in retinal and eye research, 29 (2010) 1-18.
[11] S. Iyer, A. Radwan, A. Hafezi-Moghadam, P. Malyala, M. Amiji, Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration, Journal of controlled release, (2019).
[12] E.Y. Chew, T.E. Clemons, E. Agrón, R.D. Sperduto, J.P. SanGiovanni, N. Kurinij, M.D. Davis, Long-Term Effects of Vitamins C and E, β-Carotene, and Zinc on Age-related Macular Degeneration: AREDS Report No. 35, Ophthalmology, 120 (2013) 1604-1611.e1604.
[13] N.M. Bressler, S.B. Bressler, S.L. Fine, Age-related macular degeneration, Survey of ophthalmology, 32 (1988) 375-413.
[14] T.R. Friberg, A. Pandya, K. Nazari, Transpupillary thermotherapy (TTT) for age-related macular degeneration, Seminars in ophthalmology, Taylor Francis, 2001, pp. 70-80.
[15] D. Newman, Photodynamic therapy: current role in the treatment of chorioretinal conditions, Eye, 30 (2016) 202.
[16] N. Ferrara, H.-P. Gerber, J. LeCouter, The biology of VEGF and its receptors, Nature medicine, 9 (2003) 669.
[17] E.S. Gragoudas, A.P. Adamis, E.T. Cunningham Jr, M. Feinsod, D.R. Guyer, Pegaptanib for neovascular age-related macular degeneration, New england journal of medicine, 351 (2004) 2805-2816.
[18] P.J. Rosenfeld, D.M. Brown, J.S. Heier, D.S. Boyer, P.K. Kaiser, C.Y. Chung, R.Y. Kim, Ranibizumab for neovascular age-related macular degeneration, New England Journal of Medicine, 355 (2006) 1419-1431.
[19] U. Schmidt-Erfurth, P.K. Kaiser, J.-F. Korobelnik, D.M. Brown, V. Chong, Q.D. Nguyen, A.C. Ho, Y. Ogura, C. Simader, G.J. Jaffe, Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six–week results of the VIEW studies, Ophthalmology, 121 (2014) 193-201.
[20] P.U. Dugel, A. Koh, Y. Ogura, G.J. Jaffe, U. Schmidt-Erfurth, D.M. Brown, A.V. Gomes, J. Warburton, A. Weichselberger, F.G. Holz, HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration, Ophthalmology, (2019).
[21] P.J. Rosenfeld, A.A. Moshfeghi, C.A. Puliafito, Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin®) for neovascular age-related macular degeneration, Ophthalmic Surgery, Lasers and Imaging Retina, 36 (2005) 331-335.
[22] R.L. Avery, D.J. Pieramici, M.D. Rabena, A.A. Castellarin, A.N. Ma’an, M.J. Giust, Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration, Ophthalmology, 113 (2006) 363-372. e365.
[23] A.E. Fung, P.J. Rosenfeld, E. Reichel, The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide, British Journal of Ophthalmology, 90 (2006) 1344-1349.
[24] S. Aisenbrey, F. Ziemssen, M. Völker, F. Gelisken, P. Szurman, G. Jaissle, S. Grisanti, K. Bartz-Schmidt, Intravitreal bevacizumab (Avastin) for occult choroidal neovascularization in age-related macular degeneration, Graefe's Archive for Clinical and Experimental Ophthalmology, 245 (2006) 941-948.
[25] R.A. Costa, R. Jorge, D. Calucci, J.A. Cardillo, L.A. Melo, I.U. Scott, Intravitreal bevacizumab for choroidal neovascularization caused by AMD (IBeNA Study): results of a phase 1 dose-escalation study, Investigative ophthalmology visual science, 47 (2006) 4569-4578.
[26] D.F. Martin, M.G. Maguire, S.L. Fine, G.-s. Ying, G.J. Jaffe, J.E. Grunwald, C. Toth, M. Redford, F.L. Ferris 3rd, C.o.A.-r.M.D.T.T.R. Group, Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results, Ophthalmology, 119 (2012) 1388-1398.
[27] S.M. Thomas, E. Lillie, T. Lee, J. Hamid, T. Richter, G. Janoudi, A. Agarwal, J.P. Sharpe, A. Scott, R. Warren, Anti-vascular endothelial growth factor treatment for retinal conditions: a systematic review and meta-analysis, BMJ open, 9 (2019) e022031.
[28] I. Seah, X. Zhao, Q. Lin, Z. Liu, S.Z.Z. Su, Y.S. Yuen, W. Hunziker, G. Lingam, X.J. Loh, X. Su, Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases, Eye, (2020).
[29] M. Humayun, A. Santos, J.C. Altamirano, R. Ribeiro, R. Gonzalez, A. de la Rosa, J. Shih, C. Pang, F. Jiang, P. Calvillo, J. Huculak, J. Zimmerman, S. Caffey, Implantable MicroPump for Drug Delivery in Patients with Diabetic Macular Edema, Translational Vision Science Technology, 3 (2014) 5-5.
[30] P.A. Campochiaro, D.M. Marcus, C.C. Awh, C. Regillo, A.P. Adamis, V. Bantseev, Y. Chiang, J.S. Ehrlich, S. Erickson, W.D. Hanley, J. Horvath, K.F. Maass, N. Singh, F. Tang, G. Barteselli, The Port Delivery System with Ranibizumab for Neovascular Age-Related Macular Degeneration: Results from the Randomized Phase 2 Ladder Clinical Trial, Ophthalmology, 126 (2019) 1141-1154.
[31] Y. Yeo, K. Park, Control of encapsulation efficiency and initial burst in polymeric microparticle systems, Archives of Pharmacal Research, 27 (2004) 1.
[32] J. Naik, A. Lokhande, S. Mishra, R. Kulkarni, Development of sustained release micro/nanoparticles using different solvent emulsification technique: A review, Int J Pharm Bio Sci, 3 (2012) 573-590.
[33] J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nat Rev Mater, 1 (2016).
[34] M. Madan, A. Bajaj, S. Lewis, N. Udupa, J. Baig, In situ forming polymeric drug delivery systems, Indian journal of pharmaceutical sciences, 71 (2009) 242.
[35] S.R. Van Tomme, G. Storm, W.E. Hennink, In situ gelling hydrogels for pharmaceutical and biomedical applications, International Journal of Pharmaceutics, 355 (2008) 1-18.
[36] M. Gregoritza, V. Messmann, K. Abstiens, F.P. Brandl, A.M. Goepferich, Controlled Antibody Release from Degradable Thermoresponsive Hydrogels Cross-Linked by Diels–Alder Chemistry, Biomacromolecules, 18 (2017) 2410-2418.
[37] R. Egbu, S. Brocchini, P.T. Khaw, S. Awwad, Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery, European Journal of Pharmaceutics and Biopharmaceutics, 124 (2018) 95-103.
[38] J.J. Kang-Mieler, E. Dosmar, W. Liu, W.F. Mieler, Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications, Expert Opinion on Drug Delivery, 14 (2017) 611-620.
[39] C.R. Osswald, J.J. Kang-Mieler, Controlled and Extended Release of a Model Protein from a Microsphere-Hydrogel Drug Delivery System, Ann Biomed Eng, 43 (2015) 2609-2617.
[40] W. Liu, M.A. Borrell, D.C. Venerus, W.F. Mieler, J.J. Kang-Mieler, Characterization of Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Ranibizumab, Translational Vision Science Technology, 8 (2019) 12-12.
[41] P. Gentile, V. Chiono, I. Carmagnola, P.V. Hatton, An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering, International Journal of Molecular Sciences, 15 (2014) 3640-3659.
[42] K.M. Huh, Y.W. Cho, K. Park, PLGA-PEG block copolymers for drug formulations, Drug Delivery Technology, 3 (2003) 42-44.
[43] A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids and Surfaces B: Biointerfaces, 75 (2010) 1-18.
[44] X. Xu, A.K. Jha, D.A. Harrington, M.C. Farach-Carson, X. Jia, Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks, Soft matter, 8 (2012) 3280-3294.
[45] L.M. Hirvonen, G.O. Fruhwirth, N. Srikantha, M.J. Barber, J.E. Neffendorf, K. Suhling, T.L. Jackson, Hydrodynamic Radii of Ranibizumab, Aflibercept and Bevacizumab Measured by Time-Resolved Phosphorescence Anisotropy, Pharmaceutical Research, 33 (2016) 2025-2032.
[46] X.-P. Zhang, J.-G. Sun, J. Yao, K. Shan, B.-H. Liu, M.-D. Yao, H.-M. Ge, Q. Jiang, C. Zhao, B. Yan, Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy, Biomedicine Pharmacotherapy, 107 (2018) 1056-1063.
[47] R. Varshochian, M. Riazi-Esfahani, M. Jeddi-Tehrani, A.-R. Mahmoudi, S. Aghazadeh, M. Mahbod, M. Movassat, F. Atyabi, A. Sabzevari, R. Dinarvand, Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment, Journal of Biomedical Materials Research Part A, 103 (2015) 3148-3156.
[48] Y. Yu, Y. Chau, One-Step “Click” Method for Generating Vinyl Sulfone Groups on Hydroxyl-Containing Water-Soluble Polymers, Biomacromolecules, 13 (2012) 937-942.
[49] Y. Yu, Y. Chau, Formulation of In Situ Chemically Cross-Linked Hydrogel Depots for Protein Release: From the Blob Model Perspective, Biomacromolecules, 16 (2015) 56-65.
[50] P.-L. Lai, D.-W. Hong, C.T.-Y. Lin, L.-H. Chen, W.-J. Chen, I.M. Chu, Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft, Composites Part B: Engineering, 43 (2012) 3088-3095.
[51] J. KONG, S. YU, Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures, Acta Biochimica et Biophysica Sinica, 39 (2007) 549-559.
[52] H. Zhang, A. Qadeer, W. Chen, In Situ Gelable Interpenetrating Double Network Hydrogel Formulated from Binary Components: Thiolated Chitosan and Oxidized Dextran, Biomacromolecules, 12 (2011) 1428-1437.
[53] D.J. Hines, D.L. Kaplan, Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights, Crit Rev Ther Drug Carrier Syst, 30 (2013) 257-276.
[54] Y. Wang, D. Fei, M. Vanderlaan, A. Song, Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro, Angiogenesis, 7 (2004) 335-345.
[55] E. Sakurai, H. Ozeki, N. Kunou, Y. Ogura, Effect of Particle Size of Polymeric Nanospheres on Intravitreal Kinetics, Ophthalmic Research, 33 (2001) 31-36.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53895-
dc.description.abstract濕性老年性黃斑部病變是由於脈絡膜層的血管往上新生到視網膜層,破壞了視網膜上的感光細胞導致視力受損的疾病。目前現行主要治療方式是透過玻璃體內注射抗血管新生因子的蛋白質藥物,藉此抑制脈絡膜血管生長,以達到治療目的,然而由於蛋白質藥物在玻璃體內的半衰期極短,導致患者必須每個月接受一次玻璃體內注射,才足以維持有效的藥物治療濃度,不僅會造成眼內發炎或視網膜剝離等副作用,對患者的心理與經濟上也帶來一大負擔。本研究透過結合PLGA奈米球粒與化學交聯型玻尿酸水膠,製作出包覆模型藥物牛血清白蛋白的可注射式複合型藥物傳輸系統,探討其在體外控制釋放藥物的能力。研究結果顯示,化學交聯型玻尿酸水膠可以在pH 7.4的生理環境下自發反應成膠並同時包覆含有BSA之PLGA奈米球粒,形成可注射式的複合型藥物傳輸系統,且此傳輸系統在37°C的環境下放置6週後仍保有六成以上的重量。體外試驗中,透過MTT試驗與Live/Dead染色證明此複合型藥物傳輸系統對於人類視網膜色素上皮細胞並沒有表現出明顯之細胞毒性,也不會對細胞型態有所影響,顯示材料擁有良好的生物相容性。最後,透過結合兩種藥物傳輸系統的方式,本研究可以將BSA之釋放時間從原本的一個禮拜延長到一個月以上,且所釋放出的藥物濃度依舊維持在有治療意義的濃度之上,顯示出此複合型藥物傳輸系統在濕性老年性黃斑部病變治療上,可以改善注射頻率並表現出一個更好的藥物釋放曲線的能力。zh_TW
dc.description.abstractWet age-related macular degeneration is mainly caused by the development of choroidal neovascularization, which penetrates the fibrous barrier between choroid and retina and damages the photoreceptor cells. The current treatment for wet AMD is monthly intravitreal injection of anti-vascular endothelium growth factor protein drugs. The monthly intravitreal injection increases the risks of adverse effects including endophthalmitis and retinal detachment; moreover, the psychological and economic burdens further reduce patient compliance. In the current study, we combine PLGA nanospheres with chemically crosslinked hyaluronic acid hydrogel to create an injectable composite drug delivery system encapsulating model drug bovine serum albumin and evaluate its capability of extending BSA release in vitro. The results suggest that the modified HA polymer can gel at phycological condition and encapsulate the drug-laden PLGA nanosphere upon injection. The in situ forming injectable composite DDS can maintain more than 60% of its wet weight at 37°C for more than six weeks. According to in vitro studies, the composite DDS have no cytotoxicity on human retinal pigmented epithelium cells (ARPE-19). Finally, the composite DDS can maintain BSA at the therapeutically relevant concentration for more than one month which is much longer than encapsulating BSA in chemically crosslinked HA hydrogel only. These outcomes show that the injectable composite drug delivery system can be a potential replacement for the treatment of wet AMD.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:32:43Z (GMT). No. of bitstreams: 1
U0001-0408202013580800.pdf: 4838523 bytes, checksum: 504cacd3fa02f7e60c3c9d134fff7996 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 序論 1
1.1 老年性黃斑部病變 1
1.1.1 發病機制 2
1.1.2 治療方式 5
1.1.2.1 雷射治療 5
1.1.2.2 抗血管內皮生長因子之蛋白質藥物治療 6
1.1.2.2.1 貝伐單抗(Bevacizumab) 7
1.1.2.2.2 蛋白質藥物治療風險 8
1.2 長效型藥物傳輸系統在AMD治療上的應用 9
1.2.1 高分子奈米球粒(Polymeric Nanosphere) 9
1.2.2 可注射式水膠(Injectable Hydrogel) 11
1.2.3 複合型藥物釋放系統(Composite Drug Delivery System) 13
1.3 聚乳酸-甘醇酸 14
1.4 玻尿酸 15
1.5 牛血清白蛋白 16
第二章 研究概述 17
2.1研究動機與目的 17
2.2研究方法概述 18
2.3實驗流程圖 19
2.4複合型藥物傳輸系統示意圖 19
第三章 實驗材料與方法 20
3.1實驗藥品 20
3.2實驗儀器 21
3.3材料製備 22
3.3.1 搭載牛血清白蛋白之PLGA奈米球 22
3.3.2 雙乙烯碸改質之玻尿酸(HA-VS) 23
3.3.3 二硫蘇糖醇改質之玻尿酸(HA-SH) 24
3.3.4 搭載蛋白質藥物之複合型藥物釋放系統 25
3.4材料分析 26
3.4.1 PLGA奈米球之蛋白質包覆率/蛋白質搭載率測定 26
3.4.2 PLGA奈米球之水合粒徑分析(Dynamic Light Scattering, DLS) 27
3.4.3 全反射式紅外線傅立葉光譜儀分析(ATR-FTIR) 27
3.4.4 掃描式電子顯微鏡分析(Scanning Electron Microscope, SEM) 27
3.4.5 核磁共振光譜儀分析(Nuclear Magnetic Resonance, NMR) 27
3.4.6 水膠/複合型藥物傳輸系統之膨潤以及降解曲線測定 28
3.4.7 化學交聯玻尿酸水膠之可注射性 30
3.4.8 水膠/複合型藥物傳輸系統成膠時間測定 30
3.5體外試驗 31
3.5.1 體外生物相容性測試 31
3.5.2 細胞影像觀察 32
3.5.3 水膠/複合型藥物傳輸系統於體外控制釋放牛血清白蛋白 33
3.6統計分析 34
第四章 結果與討論 35
4.1含牛血清白蛋白之聚乳酸-甘醇酸奈米球粒合成參數設定 35
4.2含牛血清白蛋白之聚乳酸-甘醇酸奈米粒子特性分析 38
4.3改質後玻尿酸高分子之化學結構分析 40
4.4化學交聯玻尿酸水膠之膨潤/降解趨勢 42
4.5複合型藥物傳輸系統之膨潤/降解趨勢 44
4.6化學交聯玻尿酸水膠之可注射性 46
4.7化學交聯玻尿酸水膠/複合型藥物傳輸系統之成膠時間 47
4.8複合型藥物傳輸系統對ARPE-19之細胞毒性 49
4.9複合型藥物傳輸系統對ARPE-19細胞型態之影響 51
4.10化學交聯玻尿酸水膠於體外控制釋放牛血清白蛋白之能力 57
4.11複合型藥物傳輸系統於體外控制釋放牛血清白蛋白之能力 60
第五章 結論 65
參考文獻 68
dc.language.isozh-TW
dc.subject可注射式藥物傳輸系統zh_TW
dc.subject奈米球粒zh_TW
dc.subject玻尿酸水膠zh_TW
dc.subject控制釋放zh_TW
dc.subject老年性黃斑部病變zh_TW
dc.subject聚乳酸甘醇酸zh_TW
dc.subjectPoly lactic-co-glycolic aciden
dc.subjectControlled releaseen
dc.subjectInjectable drug delivery systemen
dc.subjectHyaluronic acid hydrogelen
dc.subjectNanosphereen
dc.subjectAge-related macular degenerationen
dc.titlePLGA奈米球結合玻尿酸水膠作為長效複合藥物劑型於濕性老年性黃斑部病變治療上之應用zh_TW
dc.titleApplication of Nanosphere-Hydrogel Composite Ocular Drug Delivery System for the Treatment of Wet Age-Related Macular Degenerationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃意真(Yi-Cheng Huang),許馨云(Hsin-Yun Hsu)
dc.subject.keyword老年性黃斑部病變,聚乳酸甘醇酸,奈米球粒,玻尿酸水膠,可注射式藥物傳輸系統,控制釋放,zh_TW
dc.subject.keywordAge-related macular degeneration,Poly lactic-co-glycolic acid,Nanosphere,Hyaluronic acid hydrogel,Injectable drug delivery system,Controlled release,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202002367
dc.rights.note有償授權
dc.date.accepted2020-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0408202013580800.pdf
  未授權公開取用
4.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved