請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53893完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾孝文(Hsiao-Wen Chung) | |
| dc.contributor.author | Chia-Wei Chieh | en |
| dc.contributor.author | 解家威 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:32:39Z | - |
| dc.date.available | 2020-07-30 | |
| dc.date.copyright | 2015-07-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-29 | |
| dc.identifier.citation | [1] A. P. Association, Diagnostic and statistical manual of mental disorders, (DSM-5®): American Psychiatric Pub, 2013.
[2] T. Onitsuka, N. Oribe, I. Nakamura, and S. Kanba, 'Review of neurophysiological findings in patients with schizophrenia,' Psychiatry and clinical neurosciences, vol. 67, pp. 461-470, 2013. [3] R. Näätänen, P. Paavilainen, K. Alho, K. Reinikainen, and M. Sams, 'Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain?,' Neuroscience letters, vol. 98, pp. 217-221, 1989. [4] R. Näätänen and K. Alho, 'Mismatch negativity-a unique measure of sensory processing in audition,' International Journal of Neuroscience, vol. 80, pp. 317-337, 1995. [5] G. A. Light, N. R. Swerdlow, M. L. Thomas, M. E. Calkins, M. F. Green, T. A. Greenwood, et al., 'Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: characterization of demographic, clinical, cognitive, and functional correlates in COGS-2,' Schizophrenia research, vol. 163, pp. 63-72, 2015. [6] D. Friedman, Y. M. Cycowicz, and H. Gaeta, 'The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty,' Neuroscience & Biobehavioral Reviews, vol. 25, pp. 355-373, 2001. [7] S. V. Catts, A.-M. Shelley, P. B. Ward, B. Liebert, N. McConaghy, S. Andrews, et al., 'Brain potential evidence for an auditory sensory memory deficit in schizophrenia,' Am J Psychiatry, vol. 1, p. 213, 1995. [8] D. C. Javitt, P. Doneshka, I. Zylberman, W. Ritter, and H. Vaughan, 'Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study,' Biological psychiatry, vol. 33, pp. 513-519, 1993. [9] A. M. Shelley, P. Ward, S. Catts, P. T. Michie, S. Andrews, and N. McConaghy, 'Mismatch negativity: an index of a preattentive processing deficit in schizophrenia,' Biological psychiatry, vol. 30, pp. 1059-1062, 1991. [10] T. Youn, H.-J. Park, J.-J. Kim, M. S. Kim, and J. S. Kwon, 'Altered hemispheric asymmetry and positive symptoms in schizophrenia: equivalent current dipole of auditory mismatch negativity,' Schizophrenia research, vol. 59, pp. 253-260, 2003. [11] L. B. Oknina, N. Wild-Wall, R. D. Oades, S. A. Juran, B. Röpcke, U. Pfueller, et al., 'Frontal and temporal sources of mismatch negativity in healthy controls, patients at onset of schizophrenia in adolescence and others at 15 years after onset,' Schizophrenia research, vol. 76, pp. 25-41, 2005. [12] T. Miyanishi, T. Sumiyoshi, Y. Higuchi, T. Seo, and M. Suzuki, 'LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia,' PLoS One, vol. 8, p. e61152, 2013. [13] H. J. Park, J. S. Kwon, T. Youn, J. S. Pae, J. J. Kim, M. S. Kim, et al., 'Statistical parametric mapping of LORETA using high density EEG and individual MRI: application to mismatch negativities in schizophrenia,' Human brain mapping, vol. 17, pp. 168-178, 2002. [14] P. Michie, T. Budd, J. Todd, D. Rock, H. Wichmann, J. Box, et al., 'Duration and frequency mismatch negativity in schizophrenia,' Clinical Neurophysiology, vol. 111, pp. 1054-1065, 2000. [15] Y. Higuchi, T. Sumiyoshi, T. Seo, T. Miyanishi, Y. Kawasaki, and M. Suzuki, 'Mismatch negativity and cognitive performance for the prediction of psychosis in subjects with at-risk mental state,' PLoS One, vol. 8, p. e54080, 2013. [16] Y. Higuchi, T. Seo, T. Miyanishi, Y. Kawasaki, M. Suzuki, and T. Sumiyoshi, 'Mismatch negativity and P3a/reorienting complex in subjects with schizophrenia or at-risk mental state,' Frontiers in behavioral neuroscience, vol. 8, 2014. [17] C. Kärgel, G. Sartory, D. Kariofillis, J. Wiltfang, and B. W. Müller, 'Mismatch Negativity Latency and Cognitive Function in Schizophrenia,' PloS one, vol. 9, p. e84536, 2014. [18] M. H. Hsieh, J.-C. Shan, W.-L. Huang, W.-C. Cheng, M.-J. Chiu, F.-S. Jaw, et al., 'Auditory event-related potential of subjects with suspected pre-psychotic state and first‐episode psychosis,' Schizophrenia research, vol. 140, pp. 243-249, 2012. [19] S.-H. Lee, K. Sung, K.-S. Lee, E. Moon, and C.-G. Kim, 'Mismatch negativity is a stronger indicator of functional outcomes than neurocognition or theory of mind in patients with schizophrenia,' Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 48, pp. 213-219, 2014. [20] Y.-T. Lin, C.-M. Liu, M.-J. Chiu, C.-C. Liu, Y.-L. Chien, T.-J. Hwang, et al., 'Differentiation of schizophrenia patients from healthy subjects by mismatch negativity and neuropsychological tests,' PloS one, vol. 7, p. e34454, 2012. [21] G. A. Light, N. R. Swerdlow, A. J. Rissling, A. Radant, C. A. Sugar, J. Sprock, et al., 'Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia,' PLoS One, vol. 7, p. e39434, 2012. [22] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, 'Gene selection for cancer classification using support vector machines,' Machine learning, vol. 46, pp. 389-422, 2002. [23] C. Lehmann, T. Koenig, V. Jelic, L. Prichep, R. E. John, L.-O. Wahlund, et al., 'Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG),' Journal of neuroscience methods, vol. 161, pp. 342-350, 2007. [24] J.-C. Shan, C.-M. Liu, M.-J. Chiu, C.-C. Liu, Y.-L. Chien, T.-J. Hwang, et al., 'A Diagnostic Model Incorporating P50 Sensory Gating and Neuropsychological Tests for Schizophrenia,' PloS one, vol. 8, p. e57197, 2013. [25] J. K. Johannesen, B. F. O’Donnell, A. Shekhar, J. H. McGrew, and W. P. Hetrick, 'Diagnostic specificity of neurophysiological endophenotypes in schizophrenia and bipolar disorder,' Schizophrenia bulletin, p. sbs093, 2012. [26] A. H. Neuhaus, F. C. Popescu, J. A. Bates, T. E. Goldberg, and A. K. Malhotra, 'Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms,' European archives of psychiatry and clinical neuroscience, vol. 263, pp. 241-247, 2013. [27] A. H. Neuhaus, F. C. Popescu, J. Rentzsch, and J. Gallinat, 'Critical evaluation of auditory event-related potential deficits in schizophrenia: evidence from large-scale single-subject pattern classification,' Schizophrenia bulletin, p. sbt151, 2013. [28] J. Laton, J. Van Schependom, J. Gielen, J. Decoster, T. Moons, J. De Keyser, et al., 'Single-subject classification of schizophrenia patients based on a combination of oddball and mismatch evoked potential paradigms,' Journal of the neurological sciences, vol. 347, pp. 262-267, 2014. [29] M. Bodatsch, S. Ruhrmann, M. Wagner, R. Müller, F. Schultze-Lutter, I. Frommann, et al., 'Prediction of psychosis by mismatch negativity,' Biological psychiatry, vol. 69, pp. 959-966, 2011. [30] G. A. Light, L. E. Williams, F. Minow, J. Sprock, A. Rissling, R. Sharp, et al., 'Electroencephalography (EEG) and event‐related potentials (ERPs) with human participants,' Current Protocols in Neuroscience, pp. 6.25. 1-6.25. 24, 2010. [31] A. Delorme and S. Makeig, 'EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,' Journal of neuroscience methods, vol. 134, pp. 9-21, 2004. [32] J. Lopez-Calderon and S. J. Luck, 'ERPLAB: an open-source toolbox for the analysis of event-related potentials,' Frontiers in human neuroscience, vol. 8, 2014. [33] J.-L. Hsu, M. H. Hsieh, Y.-L. Tseng, M.-J. Chiu, C.-M. Liu, F.-S. Jaw, et al., 'TIME-FREQUENCY ANALYSIS OF MISMATCH NEGATIVITY IN SCHIZOPHRENIA PATIENTS IN TAIWAN,' Biomedical Engineering: Applications, Basis and Communications, vol. 23, pp. 287-293, 2011. [34] L. Fuentemilla, J. Marco-Pallarés, T. Münte, and C. Grau, 'Theta EEG oscillatory activity and auditory change detection,' Brain research, vol. 1220, pp. 93-101, 2008. [35] T. Demiralp, J. Yordanova, V. Kolev, A. Ademoglu, M. Devrim, and V. J. Samar, 'Time–frequency analysis of single-sweep event-related potentials by means of fast wavelet transform,' Brain and language, vol. 66, pp. 129-145, 1999. [36] C.-P. Shen, C.-C. Chen, S.-L. Hsieh, W.-H. Chen, J.-M. Chen, C.-M. Chen, et al., 'High-performance seizure detection system using a wavelet-approximate entropy-fSVM cascade with clinical validation,' Clinical EEG and neuroscience, vol. 44, pp. 247-256, 2013. [37] C.-P. Shen, S.-T. Liu, W.-Z. Zhou, F.-S. Lin, A. Y.-Y. Lam, H.-Y. Sung, et al., 'A physiology-based seizure detection system for multichannel EEG,' PloS one, vol. 8, p. e65862, 2013. [38] M. Sabeti, S. Katebi, and R. Boostani, 'Entropy and complexity measures for EEG signal classification of schizophrenic and control participants,' Artificial Intelligence in Medicine, vol. 47, pp. 263-274, 2009. [39] J. Xu, H. Sheng, W. Lou, and S. Zhao, 'Approximate entropy analysis of event-related potentials in patients with early vascular dementia,' Journal of Clinical Neurophysiology, vol. 29, pp. 230-236, 2012. [40] C. Cortes and V. Vapnik, 'Support-vector networks,' Machine learning, vol. 20, pp. 273-297, 1995. [41] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, 'A practical guide to support vector classification,' ed, 2003. [42] C.-C. Chang and C.-J. Lin, 'LIBSVM: a library for support vector machines,' ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, p. 27, 2011. [43] K. A. Barrett and J. M. Fulfs, 'Effect of gender on the mismatch negativity auditory evoked potential,' JOURNAL-AMERICAN ACADEMY OF AUDIOLOGY, vol. 9, pp. 444-451, 1998. [44] M. A. Kisley, D. B. Davalos, L. L. Engleman, P. M. Guinther, and H. P. Davis, 'Age-related change in neural processing of time-dependent stimulus features,' Cognitive brain research, vol. 25, pp. 913-925, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53893 | - |
| dc.description.abstract | 聽覺變異刺激實驗可以在刺激後約100毫秒激發失匹配負波(MMN)特徵波形,同時也在標準或異常聲音刺激後約300毫秒呈現特徵波形。在本研究中,我們使用分類器工具來尋找區分精神分裂症患者與正常人的特徵組合。113位精神分裂症患者與95位正常受試者參與聽覺變異刺激實驗並測量事件相關電位(ERP)。我們先計算在標準或異常聲音刺激後約100毫秒及約300毫秒的平均振幅與波峰時間延遲,也使用離散小波轉換來代表MMN ERP的特徵,結果發現在精神分裂症族群與正常族群中,theta頻段ERP波形的標準差與能量存在顯著差異。我們採用支持向量機來比較精神分裂症患者識別的準確性。分類結果顯示,使用訊雜比來表示MMN波形會得到較好的準確分類率,使用線性核函數會得到比使用高斯核函數好的準確分類率。雖然本研究提出的小波時間序列特徵組合並沒有辦法增加分類率,我們認為這是我們第一次嘗試用聽覺MMN ERP來進行精神分裂症患者的區分。 | zh_TW |
| dc.description.abstract | An auditory oddball paradigm can elicit the mismatch negativity (MMN) waveform with characteristic waveform at about 100 ms after the stimulus onset. There was also a characteristic waveform at about 300 ms after either standard or deviant sounds presentation. In this study, we used classification tools to find compositions of features in the hope of devising and imaging biomarkers to differentiate between schizophrenia patients and healthy subjects. Specifically event-related potentials (ERP) were measured from 113 schizophrenia patients and 95 healthy controls using an auditory oddball paradigm. The mean amplitudes and peak latencies of the ERP elicited by standard and deviant sounds at about 100 ms and 300 ms were first calculated. We also used discrete wavelet transform to characterize features the MMN ERP’s. We found that the standard deviation and the energy of the ERP waveform in theta band were significantly different between schizophrenia and control groups. Using support vector machine (SVM) as the classifier, we compared the accuracy of identifying schizophrenics. More accurate classification when MMN waveform is described in the signal-to-noise ratio (SNR) unit. Using a linear kernel in SVM gave higher classification accuracy than using a Gaussian kernel. The proposed wavelet time series feature compositions did not improve the classification accuracy. We consider this study is our first attempt to differentiate between healthy and schizophrenic patients using auditory MMN ERP. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:32:39Z (GMT). No. of bitstreams: 1 ntu-104-R02945031-1.pdf: 2482748 bytes, checksum: 2f92a931af4dfda97e777c9712749dbc (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objective 6 Chapter 2 Materials and Methods 7 2.1 Subjects 7 2.2 Experiment Design 7 2.3 Data Processing 9 2.3.1 Preprocessing 9 2.3.2 Mismatch Negativity 10 2.4 Feature Extraction 11 2.4.1 Wavelet Transform 11 2.4.2 Time Series Features 13 2.5 Classification 15 2.5.1 Support vector machine 15 2.5.2 Classification Approach 17 Chapter 3 Results 19 3.1 Subjects 19 3.2 Mismatch negativity 19 3.3 Feature Extraction 21 3.3.1 Wavelet Transform 21 3.3.2 Time Series Features 22 3.4 Classification 24 Chapter 4 Discussion 28 Chapter 5 Conclusion 32 REFERENCE 33 | |
| dc.language.iso | en | |
| dc.subject | 小波轉換 | zh_TW |
| dc.subject | 特徵擷取 | zh_TW |
| dc.subject | 精神分裂症 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | 失匹配負波 | zh_TW |
| dc.subject | mismatch negativity | en |
| dc.subject | support vector machine | en |
| dc.subject | wavelet transform | en |
| dc.subject | schizophrenia | en |
| dc.subject | feature extraction | en |
| dc.title | 失匹配負波特徵用於精神分裂症患者分類 | zh_TW |
| dc.title | Features of Mismatch Negativity for Classification of Schizophrenia Patients | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林發暄(Fa-Hsuan Lin) | |
| dc.contributor.oralexamcommittee | 謝明憲,林軒田 | |
| dc.subject.keyword | 失匹配負波,精神分裂症,特徵擷取,小波轉換,支持向量機, | zh_TW |
| dc.subject.keyword | mismatch negativity,schizophrenia,feature extraction,wavelet transform,support vector machine, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
