請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53892
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建彰(Jian-Zhang Chen) | |
dc.contributor.author | Ching Wang | en |
dc.contributor.author | 王競 | zh_TW |
dc.date.accessioned | 2021-06-16T02:32:37Z | - |
dc.date.available | 2020-07-31 | |
dc.date.copyright | 2015-07-31 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-29 | |
dc.identifier.citation | 1. 楊明輝,透明導電膜,藝軒出版,2006.
2. Baedeker, K., Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Annalen der Physik, 1907. 327(4): p. 749-766. 3. 陳凱翔 and 黃崇閔, 太陽能 LED 安全帽. 2012. 4. Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9. 5. Noda, K. and K. Tanimura, Production of transparent conductive films with inserted SiO2 anchor layer, and application to a resistive touch panel. Electronics and Communications in Japan (Part II: Electronics), 2001. 84(7): p. 39-45. 6. Kim, J.-Y., et al., Highly transparent tin oxide films prepared by DC magnetron sputtering and its liquid crystal display application. Japanese journal of applied physics, 2002. 41(1R): p. 237. 7. Eun, H.T. and Y.S. Ko, Comparison of F-doped SnO2 films obtained by spray pyrolysis technique. 8. Qian, J., et al., TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(36): p. 3663-3667. 9. Jarzebski, Z. and J. Marton, Physical properties of SnO2 materials I. Preparation and defect structure. Journal of the electrochemical Society, 1976. 123(7): p. 199C-205C. 10. He, Y.-S., et al., Electrical and optical characterization of Sb: SnO2. Journal of materials research, 1993. 8(12): p. 3131-3134. 11. Ghoshtagore, R., Mechanism of CVD thin film SnO2 formation. Journal of the Electrochemical Society, 1978. 125(1): p. 110-117. 12. Hartnagel, H.L., et al., Semiconducting transparent thin films. 1995: Institute of Physics Pub. Bristol, UK, Philadelphia, PA. 13. Lin, L.Y., et al., Low‐temperature flexible Ti/TiO2 photoanode for dye‐sensitized solar cells with binder‐free TiO2 paste. Progress in Photovoltaics: Research and Applications, 2012. 20(2): p. 181-190. 14. Park, J.H., et al., Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. Journal of the Electrochemical Society, 2008. 155(7): p. F145-F149. 15. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153. 16. 張浩銘,'噴射大氣電漿快速製程應用於染料敏化太陽能電池,' 應用力學研究所,國立台灣大學,2013. 17. O'regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. 1991. 18. Chen, C.-Y., et al., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano, 2009. 3(10): p. 3103-3109. 19. Yella, A., et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science, 2011. 334(6056): p. 629-634. 20. 廖維揚,'大氣噴射電漿製作染料敏化太陽能電池及銦錫氧化物處理,' 應用力學研究所, 國立台灣大學, 2014. 21. Chang, H., et al., Dye-sensitized solar cells with nanoporous TiO 2 photoanodes sintered by N 2 and air atmospheric pressure plasma jets with/without air-quenching. Journal of Power Sources, 2014. 251: p. 215-221. 22. Chang, H., et al., Preparation of nanoporous TiO 2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process. Journal of Power Sources, 2013. 234: p. 16-22. 23. Baur, W.H. and A.A. Khan, Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1971. 27(11): p. 2133-2139. 24. Godinho, K.G., A. Walsh, and G.W. Watson, Energetic and electronic structure analysis of intrinsic defects in SnO2. The Journal of Physical Chemistry C, 2008. 113(1): p. 439-448. 25. Leja, E., et al., Phase composition of SnO x thin films obtained by reactive dc sputtering. Thin Solid Films, 1979. 59(2): p. 147-155. 26. Leja, E., T. Pisarkiewicz, and A. Kołodziej, Electrical properties of non-stoichiometric tin oxide films obtained by the dc reactive sputtering method. Thin Solid Films, 1980. 67(1): p. 45-48. 27. 陳溪山, 二氧化錫薄膜之製備, 微結構及功能性之研究. 國立中山大學材料科學研究所博士論文, 民國九十二年六月, 2003. 28. Meng, L.-J. and M. Dos Santos, The influence of oxygen partial pressure and total pressure (O 2+ Ar) on the properties of tin oxide films prepared by dc sputtering. Vacuum, 1994. 45(12): p. 1191-1195. 29. Shanthi, S., C. Subramanian, and P. Ramasamy, Growth and characterization of antimony doped tin oxide thin films. Journal of Crystal Growth, 1999. 197(4): p. 858-864. 30. Shanthi, E., et al., Electrical and optical properties of tin oxide films doped with F and (Sb+ F). Journal of Applied Physics, 1982. 53(3): p. 1615-1621. 31. Dutta, J., et al., Pyrosol deposition of fluorine-doped tin dioxide thin films. Journal of materials science, 1995. 30(1): p. 53-62. 32. Fonstad, C. and R. Rediker, Electrical properties of high‐quality stannic oxide crystals. Journal of applied physics, 1971. 42(7): p. 2911-2918. 33. Chopra, K., S. Major, and D. Pandya, Transparent conductors—a status review. Thin solid films, 1983. 102(1): p. 1-46. 34. Kimura, T., S. Inada, and T. Yamaguchi, Microstructure development in SnO2 with and without additives. Journal of Materials Science, 1989. 24(1): p. 220-226. 35. Sze, S.M., Semiconductor sensors. 1994: John Wiley & Sons. 36. Sanon, G., R. Rup, and A. Mansingh, Growth and characterization of tin oxide films prepared by chemical vapour deposition. Thin solid films, 1990. 190(2): p. 287-301. 37. Liu, Y., et al., Structural and gas-sensing properties of nanometre tin oxide prepared by PECVD. Journal of Materials Science: Materials in Electronics, 1996. 7(4): p. 279-282. 38. Das, D. and R. Banerjee, Properties of electron-beam-evaporated tin oxide films. Thin Solid Films, 1987. 147(3): p. 321-331. 39. Di Giulio, M., et al., SnO 2 thin films for gas sensor prepared by rf reactive sputtering. Sensors and Actuators B: Chemical, 1995. 25(1): p. 465-468. 40. Smith, A., et al., Experimental survey of different precursor/solvent pairs for the deposition of tin dioxide by pyrosol. Thin solid films, 1998. 315(1): p. 17-21. 41. Anishchik, V., L. Konyushko, and V. Yarmolovich, STRUCTURE AND PROPERTIES OF SnO 2 FILMS. Inorg. Mater., 1995. 31(3): p. 313-316. 42. http://www.alyssahale.com/design.htm. 43. http://www.jeol.co.jp/en/science/product_file/file/en_sc20-2.jpg. 44. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726. 45. http://www.hindawi.com/journals/isrn/2012/275872/fig2/. 46. http://textileacademia.com/tag/screen-printing/. 47. Ansari, S., et al., Grain size effects on H 2 gas sensitivity of thick film resistor using SnO 2 nanoparticles. Thin solid films, 1997. 295(1): p. 271-276. 48. Gui, T., et al., Structure and features of SnO2 thin films prepared by RF reactive sputtering. Chiese Optics Letters, 2010. 8(s1): p. 134. 49. http://140.114.17.97/subject.htm. 50. Grätzel, M., Photovoltaic and photoelectrochemical conversion of solar energy. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007. 365(1853): p. 993-1005. 51. Haque, S.A., et al., Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. Journal of the American Chemical Society, 2005. 127(10): p. 3456-3462. 52. http://www.folsomlabs.com/modeling/module/module_model. 53. http://www.engh.kuas.edu.tw/files/ne/rg5e5qtc34.pdf. 54. 陳奕君、陳建彰,'第十一章軟性電子材料,'高立出版社,2013年2月. 55. Ito, S., et al., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode. Chemical Communications, 2006(38): p. 4004-4006. 56. Diebold, U., The surface science of titanium dioxide. Surface science reports, 2003. 48(5): p. 53-229. 57. Reyes-Coronado, D., et al., Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(14): p. 145605. 58. Deb, S.K., Dye-sensitized TiO 2 thin-film solar cell research at the national renewable energy laboratory (NREL). Solar energy materials and solar cells, 2005. 88(1): p. 1-10. 59. Park, N.-G., J. Van de Lagemaat, and A. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B, 2000. 104(38): p. 8989-8994. 60. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344. 61. Kambe, S., et al., Mesoporous electrodes having tight agglomeration of single-phase anatase TiO 2 nanocrystallites: Application to dye-sensitized solar cells. Solar energy materials and solar cells, 2000. 61(4): p. 427-441. 62. Kavan, L. and M. Grätzel, Highly efficient semiconducting TiO 2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta, 1995. 40(5): p. 643-652. 63. Krüger, J., et al., High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters, 2001. 79(13): p. 2085-2087. 64. Gan, W.Y., et al., Novel TiO 2 thin film with non-UV activated superwetting and antifogging behaviours. Journal of Materials Chemistry, 2007. 17(10): p. 952-954. 65. Xia, J., et al., Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells. The Journal of Physical Chemistry C, 2007. 111(22): p. 8092-8097. 66. Liu, D.-W., et al., Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO 2 photoanodes. Optics express, 2012. 20(102): p. A168-A176. 67. Cameron, P.J. and L.M. Peter, Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells. The Journal of Physical Chemistry B, 2003. 107(51): p. 14394-14400. 68. Yu, I.G., et al., Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry, 2011. 21(2): p. 532-538. 69. MaxáLu, G., Cubic CeO 2 nanoparticles as mirror-like scattering layers for efficient light harvesting in dye-sensitized solar cells. Chemical Communications, 2012. 48(59): p. 7386-7388. 70. Grünwald, R. and H. Tributsch, Mechanisms of instability in Ru-based dye sensitization solar cells. The Journal of Physical Chemistry B, 1997. 101(14): p. 2564-2575. 71. Nazeeruddin, M.K., et al., Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390. 72. Nazeeruddin, M.K., et al., Acid-base equilibria of (2, 2'-bipyridyl-4, 4'-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry, 1999. 38(26): p. 6298-6305. 73. Nazeeruddin, M.K., et al., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 2001. 123(8): p. 1613-1624. 74. El-Shishtawy, R.M., Functional dyes, and some hi-tech applications. International Journal of Photoenergy, 2009. 2009. 75. Wu, J., et al., An all-solid-state dye-sensitized solar cell-based poly (N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. Journal of the American Chemical Society, 2008. 130(35): p. 11568-11569. 76. Wang, P., et al., Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2003. 125(5): p. 1166-1167. 77. Stathatos, E., et al., A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid. Chemistry of materials, 2003. 15(9): p. 1825-1829. 78. Kim, S.-S., et al., Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta, 2006. 51(18): p. 3814-3819. 79. Fang, X., et al., Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1): p. 179-182. 80. Lin, L.-Y., et al., Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO 2 photoanode. Journal of Power Sources, 2010. 195(13): p. 4344-4349. 81. Wu, M., et al., Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy & Environmental Science, 2011. 4(6): p. 2308-2315. 82. Eliasson, B. and U. Kogelschatz, Nonequilibrium volume plasma chemical processing. Plasma Science, IEEE Transactions on, 1991. 19(6): p. 1063-1077. 83. Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Plasma Science, IEEE Transactions on, 1998. 26(6): p. 1685-1694. 84. Yuji, T. and Y.-M. Sung, Surface Treatment of TiO 2 Films by Pulse Plasma for Dye-Sensitized Solar Cells Application. Plasma Science, IEEE Transactions on, 2007. 35(4): p. 1010-1013. 85. Lee, W.J., et al., Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS applied materials & interfaces, 2009. 1(6): p. 1145-1149. 86. 陳建彰, 電子材料特論講義,2014. 87. http://www.toray.cn/trc/kinougenri/kouzou/kou_006.html. 88. http://www.shimadzu.com/an/spectro/uv/accessory/solidsample/solid.html. 89. Patterson, A., The Scherrer formula for X-ray particle size determination. Physical review, 1939. 56(10): p. 978. 90. Tauc, J., Amorphous and liquid semiconductors. 2012: Springer Science & Business Media. 91. Wright, P.V., Electrical conductivity in ionic complexes of poly (ethylene oxide). British Polymer Journal, 1975. 7(5): p. 319-327. 92. Serin, T., et al., Electrical, structural and optical properties of SnO 2 thin films prepared by spray pyrolysis. Journal of Non-Crystalline Solids, 2006. 352(3): p. 209-215. 93. Chacko, S., N. Sajeeth Philip, and V. Vaidyan, Effect of substrate temperature on structural, optical and electrical properties of spray pyrolytically grown nanocrystalline SnO2 thin films. physica status solidi (a), 2007. 204(10): p. 3305-3315. 94. Chen, J.-Z., et al., All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets. Journal of Power Sources, 2015. 274: p. 894-898. 95. Poudel, P. and Q. Qiao, Carbon nanostructure counter electrodes for low cost and stable dye-sensitized solar cells. Nano Energy, 2014. 4: p. 157-175. 96. https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/. 97. Wu, M., et al., Low‐Cost Molybdenum Carbide and Tungsten Carbide Counter Electrodes for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition, 2011. 50(15): p. 3520-3524. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53892 | - |
dc.description.abstract | 本研究利用噴射式大氣電漿(Atmospheric pressure plasma jet,APPJ)進行薄膜材料快速熱退火以及奈米氧化物燒結製程。本論文內容包含兩大部分,第一部分為利用大氣噴射電漿快速熱退火多孔隙氧化錫;第二部分利用大氣噴射電漿燒結製備染料敏化太陽能電池的二氧化鈦光電極以及二氧化鈦/奈米碳管對電極,用以取代昂貴的金屬鉑(Pt)對電極,並與傳統爐管退火製程的電池作比較。
實驗一利用大氣噴射氮氣電漿燒結處理奈米多孔隙(nanoporous)氧化錫(Tin oxide,SnO2)薄膜,進行氧化錫薄膜的燒結退火製程,比起傳統爐管退火大幅降低了熱處理時間以及熱預算,達到製程上節省成本以及縮短製程時間的目的。本實驗探討大氣電漿燒結時間對多孔隙氧化錫薄膜的影響,發現隨APPJ處理時間的增加,SnO2薄膜的可見光吸收邊緣(absorption edge)先減少後增加;光學能隙先減少後增加;導電率先增加後減少;而活化能則是先減少後增加。APPJ處理時間可以用為調變SnO2材料性質的參數,合適的APPJ處理時間才會使SnO2材料適合某些用途。此處的SnO2薄膜是以網印法(Screening printing)製備,網印法搭配大氣噴射電漿製程適用於卷軸式製程(Roll-to-roll process),且製備的多孔隙氧化錫薄膜具有高比表面積(Surface-to-volume ratio),使其可運用於氣體感測器和化學催化劑上。 實驗二為利用大氣噴射電漿快速燒結二氧化鈦光電極和二氧化鈦/奈米碳管對電極,並研究電漿燒結處理時間對二氧化鈦/奈米碳管對電極材料性質及所組裝染料敏化太陽能電池的影響。由掃描式電子顯微鏡可發現,APPJ對二氧化鈦/奈米碳管的反應十分劇烈,APPJ燒結時間到達15秒以上時,FTO玻璃上的奈米碳管幾乎完全和電漿反應並且被移除。相較之下,經爐管退火燒結相同時間的樣本則仍且有大量的奈米碳管。由此結果可以得知奈米碳管的快速反應為熱和電漿協同作用所造成。此對電極在染秒敏化太陽能電池的應用上,最佳對電極製程參數為5秒的APPJ燒結時間,太陽能電池光電轉換效率達5.65%,和未經處理之二氧化鈦/奈米碳管對電極的光電轉換效率2.19%相比,效率提升了158%,已接近傳統鉑(Pt)對電極的太陽能電池效率6.91%但是大氣噴射電漿對於奈米碳管對電極燒結處裡的製程,製程成本較鉑對電極低廉,且製程時間相對快速,所需之熱預算較低,單位面積所需能量只約傳統爐管製程的五分之一,具有高度發展的潛力。 | zh_TW |
dc.description.abstract | We used atmospheric pressure plasma jets (APPJs) for the rapid sintering of nanoporous SnO2 and CNT/TiO2. The latter was used as the counter-electrodes of dye-sensitized solar cells (DSSCs) to replace conventional precious Pt-based counter electrode. DSSCs fabricated using APPJs were compared with those made using conventional furnace calcination process.
In the first part of the experiment, we sinter nanoporous tin oxide films using atmospheric pressure plasma jets (APPJs). Comparing to conventional furnace calcination process, APPJ sintering substantially reduces treatment time and thermal budget. With an increase in APPJ sintering time, the slope of optical absorption edge decreases and then increases, optical band gap decreases and then increases, the electrical conductivity increases and then decreases, and activation energy of electrical conductivity decreases and then increases. A proper APPJ sintering time is required for the sintered SnO2 to be used in certain application. The features of nanoporous SnO2 were defined by screening printing method, followed by APPJ sintering This sequential screening-printing and APPJ sintering process is applicable for roll-to-roll process. The high surface-to-volume ratio of nanoporous SnO2 make the synthesized materials useful for gas sensors or catalysts in some chemical reactions. The second part of the experiment is regarding the APPJ sintering process of CNT/TiO2 counter electrodes of DSSCs. When APPJ sintering time exceeds 15 s, the CNTs were mostly removed, indicating vigorous interaction between CNTs and N2 APPJ. In the samples sintered for the same durations by furnace-calcination process, plenty of CNTs were present This suggests that the vigorous reaction was caused by the synergetic effect of the N2 APPJ and the heat. DSSCs with CNT/TiO2 counter electrodes sintered for 5 s revealed best performance with a efficiency of 5.65%, a enhancement of 158% was achieved compared to 2.19% for the DSSC with as-deposited counter electrode. The efficiency approaches that of DSSC with sputtered Pt counter electrode. APPJ sintering reduces the fabrication thermal budget and processing time, thereby lowering the cost. The process can be scaled up as a roll-to-roll process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:32:37Z (GMT). No. of bitstreams: 1 ntu-104-R02543040-1.pdf: 13954566 bytes, checksum: f100ff7a313db001b5fa718eed213512 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 總目錄 VI
圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2 透明導電膜 氧化錫之簡介 2 1.3染料敏化太陽能電池簡介 3 1.4研究動機 5 1.5論文大綱 6 2.1氧化錫之基本性質 7 2.1.1氧化錫之薄膜結構 7 2.1.2 氧化錫之與導電性摻雜元素 8 2.1.3 氧化錫之光學性質 10 2.2氧化錫薄膜的製備 12 2.2.1濺鍍法與磁控濺鍍法 12 2.2.2電子束蒸鍍 13 2.2.3噴霧熱解法 14 2.2.4網印法 15 2.3氧化錫之文獻回顧 16 2.3.1傳統爐管退火之SnO2薄膜 16 2.4染料敏化太陽能電池之工作原理與特性參數 18 2.4.1工作原理 18 2.4.2太陽能電池之特性參數 21 2.5染料敏化太陽能電池各組成部分 23 2.5.1基板種類與特性 23 2.5.2二氧化鈦基本介紹 27 2.5.3膜厚 29 2.5.4緻密層 30 2.5.5散射層 30 2.5.6染料 31 2.5.7電解液 32 2.5.8對電極 33 2.6大氣電漿之基本介紹 36 2.6.1電漿原理 36 2.6.2大氣電漿種類與工作原理 37 2.6.3大氣電漿的優點 40 2.7染料敏化太陽能電池之文獻回顧 41 2.7.1大氣電漿處理二氧化鈦光電極 41 2.7.2碳質對電極 44 第三章 實驗架構與量測儀器介紹 46 3.1實驗材料與量測儀器 46 3.2實驗流程 49 3.2.1實驗一 氧化錫之大氣電漿燒結處理 49 3.2.2實驗二 大氣電漿製備二氧化鈦光電極以及奈米碳管對電極 52 3.3量測儀器介紹 56 3.3.1 掃描式電子顯微鏡 56 3.3.2 X光粉末繞射儀 57 3.3.3 紫外光-可見光光譜儀 58 3.3.4電性量測 59 3.3.5 X光子能譜儀 59 3.3.6太陽光模擬器 60 3.3.7電化學阻抗分析儀 60 第四章 實驗結果與討論 61 4.1大氣噴射電漿快速燒結多孔隙氧化錫 61 4.1.1多孔隙氧化錫之晶體結構與表面型態 61 4.1.2光學性質與能隙大小 63 4.1.3電學性質 66 4.2多孔隙二氧化鈦/奈米碳管對電極 68 4.2.1多孔隙二氧化鈦/奈米碳管之表面型態 68 4.2.2多孔隙二氧化鈦/奈米碳管光學性質 70 4.2.3多孔隙二氧化鈦/奈米碳管之電學性質 71 4.2.4X光電子能譜儀分析 71 4.2.5水接觸角 75 4.2.6染料敏化太陽能電池特性參數分析 77 4.2.7電化學阻抗分析 80 第五章 結論與未來工作 83 參考文獻 85 | |
dc.language.iso | zh-TW | |
dc.title | 快速大氣噴射電漿奈米孔隙氧化錫及二氧化鈦/奈米碳管之複材製程開發:應用於染料敏化太陽能電池 | zh_TW |
dc.title | Nanoporous Tin Oxides and Titanium Dioxide/Carbon Nanotube Composites Fabricated using Rapid Atmospheric-Pressure-Plasma-Jet Processes: Application to Dye-Sensitized Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳奕君(I-Cheng Chen),張世航(S.H.Chen) | |
dc.subject.keyword | 大氣電漿,氧化錫,染料敏化太陽能電池,奈米碳管, | zh_TW |
dc.subject.keyword | APPJ,SnO2,DSSC,CNT, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 13.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。