Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53875
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源
dc.contributor.authorChia-Chen Huangen
dc.contributor.author黃佳貞zh_TW
dc.date.accessioned2021-06-16T02:32:05Z-
dc.date.available2020-07-30
dc.date.copyright2015-07-30
dc.date.issued2015
dc.date.submitted2015-07-29
dc.identifier.citation行政院環保署環境檢驗所。2002。土壤水分含量測定方法-重量法。 (NIEA S280.61C)
行政院環保署環境檢驗所。2003。土壤中重金屬檢測方法-王水消化法。 (NIEA S321.63B)。
林家棻。1967。台灣省農田肥力測定。台灣省農業試驗所報告。台灣省農業試驗所刊行。No.28 : 第2頁。
連深。1963。矽對水稻之效應。台灣省農業試驗所研究。第12卷第3期。
張尊國,2007,臺北市農地土壤重金屬含量調查及查證計畫,台北市政府環境保護局。
黃和炎、施宗禮、林滄澤。1981。水稻長期施用矽酸爐渣試驗與應用推廣。台南區農業改良場研究彙報。第15號: 43-54。
Ahmad, A., M. Afzal, A.U.H. Ahmad, and M. Tahir. 2013. Effect of foliar application of silicon on yield and quality of rice (Oryza Sativa L). Cercetari agronomice in Moldova 46:21–28.
Brechbühl, Y., I. Christl, E.J. Elzinga, and R. Kretzschmar. 2012. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments. J. Colloid Interface Sci. 377:313–321.
Buck, G.B., G.H. Korndörfer, A. Nolla, and L. Coelho. 2008. Potassium silicate as foliar spray and rice blast control. J. Plant Nutr. 31:231–237.
Casey, W.H., S.D. Kinrade, C.T.G. Knight, D.W. Rains, and E. Epstein. 2004. Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell Environ. 27:51–54.
Chan, P.C., and J. Huff. 1997. Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. Environ. Carcinog. Ecotoxicol. Rev. Part C 15:83–122.
Chen, Z., Y.G. Zhu, W.J. Liu, and A.A. Meharg. 2005. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165:91–97.
Cullen, W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89:139–155.
Daus, H., H. Weiss, J. Mattusch, and R. Wennrich. 2006. Preservation of arsenic 103 species in water samples using phosphoric acid –Limitationsand long-term stability. Talanta 69:430–434.
Dittmar, J., A. Voegelin, L.C. Roberts, S.J. Hug, G.C. Saha, M.A. Ali, A.B.M. Badruzzaman, and R. Kretzschmar. 2007. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ Sci. Technol. 41:5967–5972.
Dixit, S., and J.G. Hering. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37:4182–4189.
Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:641–664.
Fendorf, S., and B.D. Kocar. 2009. Biogeochemical processes controlling the fate and transport of arsenic: Implications for south and southeast Asia. Adv. Agron. 4:137–164.
Fleck, A. T., J. Mattusch, and M.K. Schenk. 2013. Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J. Plant Nutr. Soil Sci. 176:785–794.
Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p.383–411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Physical and mineralogical methods. ASA and SSSA, Madison, WI.
Goldberg, S. 2002. Competitive adsorption of arsenate ans arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66:413–421.
Guntzer, F., C. Keller, and J.D. Meunier. 2012. Benefits of plant silicon for crops: a review. Agron. Sustain. Dev. 32:201–213.
Hodson, M.J., P.J. White, A. Mead, and M.R. Broadley. 2005. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 96:1027–1046.
Hsu, K.H., L.L. Hsieh, H.Y. Chiou, C.J. Lee., C.Y. Wang, T.H. Lee, and C.J. Chen. 1999. Comparison of characteristics and arsenic toxicity between residents of southwestern region and northeastern basin in Taiwan: A study on prevalence of hypertension. Chin. J. Public Health 18:124–133.
Huang, J.H., G. Ilgen, and P. Fecher. 2010. Quantitative chemical extraction for arsenic speciation in rice grains. J. Anal. At. Spectrom. 25:800–802.
Jain, C.K., and I. Ali. 2000. Arsenic: occurrence, toxicity and speciation techniques Water Res. 34:4304–4312.
Jones, L.C., B.J. Lafferty, and D.L. Sparks. 2012. Additive and competitive effects of bacteria and Mn oxides on arsenite oxidation kinetics. Environ. Sci. Technol. 46:6548–6555.
Joseph, E.K. 2009. Assessing the silicon status of rice (Oryza sativa). M.Sc. thesis (unpublished). Deptt. Of Environmental and soil Sci., Louisiana State Univ. Agric., Mech. College.
Karim, A., A. Raab, J. Feldmann, S.M. Ghaderian, and A.A. Meharg. 2009. An arsenic accumulating, hyper-tolerant brassica, Isatis capadocica Desv. New Phytol. 184:41–47.
Lee, C. H., H.H. Huang, C.H. Syu, T.H. Lin, and D.Y. Lee. 2014. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application. J. Hazard. Mater. 276:253–261.
Li, R.Y., J.L. Stroud, J.F. Ma, S.P. McGrath, and F.J. Zhao. 2009a Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 43:3778–3783.
Li, R.Y., Y. Ago, W.J. Liu, N. Mitani, J. Feldmann, S.P. McGrath, J.F. Ma, and F.J. 2009b. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 150:2071–2080.
Liu, C., F. Li, C. Luo, X. Liu, S. Wang, T. Liu, and X. Li. 2009. Foliar application of two silica sols reduced cadmium accumulation in rice grains. J. Hazard. Mater. 161:1466–1472.
Liu, C., L. Wei, S. Zhang, X. Xu, and F. Li. 2014. Effects of nanoscale silica sol foliar application on arsenic uptake, distribution and oxidative damage defense in rice (Oryza sativa L.) under arsenic stress. RSC Advances 4:57227–57234.
Liu, W. J., S.P. McGrath, and F.J. Zhao. 2014. Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant Soil 376:423–431.
Lu, C.M., C.Y. Zhang, J.Q. Wen, G.R. Wu, and M.X. Tao. 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21:168–172.
Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. 2006. A silicon transporter in rice. Nature 440:688–691.
Ma, J.F., N. Yamaji, N. Mitani, K. Tamai, S. Konishi, T. Fujiwara, M. Katsuhara, and M. Yano.2007. An efflux transporter of silicon in rice. Nature 448:209–212.
Ma, J.F., N. Yamaji, N. Mitani, X.Y. Xu, Y.H. Su, S.P. McGrath, and F.J. Zhao. 2008. Transporters of arsenite in rice and their role in arsenicaccumulation in rice grain. Proc. Natl. Acad. Sci. U.S.A. 105:9931−9935.
Massey, F.P., and S.E. Hartley. 2006. Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc. R. Soc. B. 273:2299–2304.
Mckeague, J.A., and J.H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 45:49–62.
McLean, E.O. 1982. Soil pH and lime requirement. p.199–223. In A.L. Page, R.H. Miller, and D.R. Keeney (ed.) Methods of soil analysis. Part 2. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI.
Meharg, A.A., and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 154:29–43.
Meharg, A.A., and M.R. Macnair. 1992. Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus L. Heredity 69:336–341.
Meharg, A.A., and M. Rahman. 2003. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 37:229–234.
Mehra, O.P., and M.L. Jackson. 1960. Iron oxide removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay. Clay Miner. 7:317–327.
Meng, X.G., S.B. Bang, and G.P. Korfiatis. 2000. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 34:1255–1261.
Menzies, J., P. Bowen, D. Ehret, and A.D.M. Glass. 1992. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J. Am. Soc. Hortic. Sci. 117:902–905.
Mukhopadhyay, R., B.P. Rosen, L.T. Phung, and S. Silver. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26:311–325.
Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic, and organic matter. p.539–577. In A.L. Page, R.H. Miller, and D.R. Keeney (ed.) Methods of soil analysis. Part 2. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI.
Onken, B.M., and L.R. Hossner. 1995. Plant uptake and determination of arsenic species in soil solution under flooded conditions. J. Environ. Qual. 24:373–381.
Sauer, D., L. Saccone, D.J. Conley, L. Herrmann, and M. Sommer. 2006. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108.
Savant, N. K., G.H. Snyder, and L.E. Datnoff. 1997. Silicon management and sustainable rice production. Adv. Agron. 58:151–199.
Seyfferth, A. L., and S. Fendorf. 2012. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ. Sci. Technol. 46:13176–13183.
Smedley, P.L., and D.G. Kinniburgh. 2002. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17:517–568.
Syu, C.H., P.Y. Jiang, H.H. Huang, W.T. Chen, T.H. Lin, and D.Y. Lee. 2013. Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides and organic matter. Soil Sci. Plant Nutr. 59:463–471.
Takahashi, E. 1995. Uptake mode and physiological functions of silica. Sci. Rice Plant 2:58–71.
Takahashi, E., J.F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 2:99–122.
Takahashi, Y., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou, and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 38:1038–1044.
Tseng, C.H., T.Y. Tai, C.K. Chong, C.P. Tseng, M.S. Lai, B.J. Lin, H.Y. Chiou, Y.M. Hsueh, K.H. Hsu, and C.J. Chen. 2000. Long-term arsenic exposure and incidence of non-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ. Health Persp. 108:847–851.
Wang, S., F. Wang, and S. Gao. 2014. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ. Sci. Pollut. R. 22:2837–2845.
Williams, P.N., M.R. Islam, E.E. Adomako, A. Raab, S.A. Hossain, Y.G. Zhu, J. Feldmann, and A.A. Meharg. 2006. Increase in rice grain As for regions of Bangladesh irrigating paddies with elevated As in groundwaters. Environ. Sci. Technol. 40:4903–4908.
Xu, G.H., X.H. Zhan, C.H. Li, S.D. Bao, X.B. Liu, and T.D. Chu. 2001. Assessing methods of available silicon in calcareous soils. Commun. Soil Sci. Plant Anal. 32: 787–201.
Xu, X.Y., S.P. McGrath, A. Meharg, and F.J. Zhao. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 42:5574–5579.
Yamaguchi, N., T. Nakamura, D. Dong, Y. Takahashi, S. Amachi, and T. Makino. 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH and iron dissolution. Chemosphere 83:925–932.
Yoshida, S. 1975. The physiology of silicon in rice. Technical Bulletin No. 25. Food Fert. Tech. Centr., Taipei, Taiwan.
Yoshida, S., Y. Ohnishi, and K. Kitagishi. 1962. Chemical forms, mobility and deposition of silicon in rice plant. Soil Sci. Plant Nutr. 8:15–21.
Zhao, F. J., J.F. Ma, A.A. Meharg, and S.P. McGrath. 2009. Arsenic uptake and metabolism in plants. New Phytol. 181:777–794.
Zhao, F. J., S.P. McGrath,and A.A. Meharg. 2010. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 61:535–559.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53875-
dc.description.abstract稻米是人類攝入砷的主要途徑之一,受砷污染之稻米會對於全球人類健康及糧食安全造成威脅。矽和三價砷藉由相同轉運途徑進入水稻根部,前人研究中發現,在水耕試驗中施用矽,可降低水稻吸收砷和砷對水稻之毒性,然而,矽施用於土壤中,對於砷的生物有效性同時有促進和抑制的作用,藉由矽和砷競爭固體吸附位置,土壤溶液中砷濃度有上升現象,矽又可與砷競爭植體之吸收,因而降低植體中砷濃度。由於矽和砷競爭土壤吸附位置可能對水稻生長產生不利之影響,葉面施矽可能為促進水稻生長,減輕水稻砷累積和砷毒性更有效的另一種方式。因此,本篇之研究目的在於評估土壤及葉面施用矽酸鈉對水稻矽和砷累積的影響,探討不同矽施用比例對於水稻累積砷的影響。盆栽試驗於溫室中進行,試驗使用四種土壤,包含兩種天然之砷汙染關渡土壤,關渡低砷土壤砷濃度為17 mg kg-1 ;高砷土壤砷濃度為 128 mg kg-1,以及另外兩種未添加/添加砷之淇武蘭土壤,分為未添加砷之淇武蘭低砷土壤 (16 mg kg-1) 及額外添加80 mg As(V) kg-1之淇武蘭高砷土壤 (114 mg kg-1)。矽的處理則是選用矽酸鈉溶液,土壤施用量分為 0、1 和 3 倍 (S0x, S1x, S3x) 推薦施用量(0.175 g Si kg -1 soil);葉面施用量則為分別噴灑每盆 50 毫升之 0、0.1% 和 0.3% 的矽酸鈉溶液 (F0x, F1x, F3x)。施用時機分別在水稻幼苗移植後之第 15 和 30 天,種植期間測定土壤孔隙水之 pH、Eh、矽、砷和砷物種濃度,在水稻種植滿 50 天後採收,測定植體株高、地上部生質量、矽和砷濃度。試驗結果顯示,土壤孔隙水中的矽濃度會隨著土壤施矽量增加而顯著上升,且由於淇武蘭土壤無定型鐵鋁及有機質含量較低,對於矽的吸附力較低,因此,淇武蘭土壤孔隙水矽濃度高於關渡土壤十倍,在三倍土壤矽施用量之下,淇武蘭低砷、高砷和關渡高砷土壤,孔隙水中之砷濃度上升。土壤施矽於高砷土壤中,隨著施用率增加,水稻植體生質量顯著下降,地上部矽濃度有顯著增加,而砷濃度則顯著下降。雖然土壤施用矽會使孔隙水中砷濃度提高,但和對照組比較,植體地上部砷濃度降低,低砷土壤中主要是因孔隙水中之矽砷莫耳比值增加,導致矽和砷競爭植體吸收,在高砷土壤中則可能是因為砷對水稻幼苗產生毒害,使水稻吸收砷降低。然而,葉面施矽對於土壤孔隙水之 pH、Eh、矽和砷濃度,以及植體生質量、地上部之矽和砷濃度無顯著影響,推測較有可能的原因為施用之矽未進入植體內,無法被水稻幼苗吸收利用。zh_TW
dc.description.abstractIntake of arsenic (As) from rice consumption poses a threat to food safety and human health globally. Silicon (Si) and As(III) share the pathway of uptake and translocation in rice. Si application into hydroponic culture solutions can decrease As uptake and toxicity to rice plant shown in previous studies. However, Si application into soils, both enhancing and inhibition effects on As bioavailability could occur because of increasing As release into soil solutions resulted from competitive sorption, and decreasing As uptake caused by competing pathways into rice plants. Since the adverse effects may come with the competition adsorption onto soils between As and Si, foliar application of Si fertilizer might be an alternative and more efficient way to enhance rice growth and to reduce As accumulation and toxicity than soil applications. Therefore, this study evaluated the effect of foliar and soil application of Si on rice seedlings grown in As contaminated soils and investigated the influence of various application rates of Si on arsenic accumulation in rice seedlings. Pot experiments of rice seedling growth in the greenhouse were conducted with four soils, including two geogenic As-elevated Guandu soils [GdL and GdH with low (17 mg kg-1) and high (128 mg kg-1) levels of As, respectively] and two Chiwulan soils [CaL and CaH with As-unspiked and spiked (80 mg As(V) kg-1), respectively]. In the Si treatments, sodium silicate was added into soils at the application rates of 0, 1, and 3 times (S0x, S1x, S3x) of Si fertilizer recommendation rate (0.175 g Si kg -1 soil) for soil application, and was sprayed on rice at the application rates of 50 mL of 0, 0.1%, and 0.3% Si (F0x, F1x, F3x) solutions per pot for foliar application. The applications were performed at the 15 and 30 days after rice transplanting respectively. After 50 days of growth, the rice seedlings were harvested. The concentrations of Si, As and As species in soil solutions and As concentrations in roots and shoots of rice seedlings were determined. The results show that the Si concentrations in the soil solution were increased significantly by soil application of Si. Due to the lower capacity of Si retention in Ca soils, the concentrations of Si in Ca soil solutions were one order of magnitude higher than those in Gd soils. The concentrations of As in soil solutions were increased significantly treated by S3x in CaL, CaH, and GdH. For high As contaminated/spiked soils with soil application of Si, the biomass of rice plants and shoot-As concentration decreased with the Si application rates, whereas the shoot-Si concentrations were increased. Although soil application of Si led to higher As concentrations in soil solutions, it decreased shoot-As concentrations compared with the control, resulting from the increase of Si/As molar ratio in soil solutions and thus causing competition between Si and As for plant uptake. The decrease of As uptake by rice seedlings may result from As phytotoxicity of rice plants grown in high-As soils. However, foliar application of Si had no significant effect on pH, Eh, Si and As concentrations in soil solution, plant biomass and shoot-Si and shoot-As concentrations of rice seedlings. It suggested that the foliar application of Si in this study were not available for plant uptake.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:32:05Z (GMT). No. of bitstreams: 1
ntu-104-R02623004-1.pdf: 2973378 bytes, checksum: 7d9d80fb178ab37ad10bffbb1a98beef (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
第一章、 緒言 1
1.1 砷 1
1.2 砷的來源及影響 3
1.3 土壤中之砷 5
1.4 矽與水稻生長之關係 9
1.5 矽酸影響水稻對砷之吸收 13
1.6 葉面施矽對水稻之影響 17
1.7 研究動機及目的 18
第二章、 材料與方法 19
2.1 供試土壤採集 19
2.2 土壤基本性質測定 19
2.2.1 土壤水分含量 19
2.2.2 土壤pH 值:玻璃電極法 19
2.2.3 土壤質地:採用比重計法測定 19
2.2.4 土壤有機質含量:Walkley-Black 之濕式氧化法 20
2.2.5 土壤無定型鐵鋁氧化物含量:草酸銨抽出法 21
2.2.6 土壤游離性鐵鋁氧化物含量 21
2.2.7 土壤有效性矽含量 22
2.2.8 土壤中總砷含量測定: HNO3- H2O2分解法 23
2.2.9 土壤重金屬檢測方法:王水消化法 23
2.3 供試土壤添加 As(V) 之處理 25
2.4 水稻幼苗生長之盆栽試驗 25
2.4.1 供試水稻品種 25
2.4.2 試驗土壤前處理 25
2.4.3 土壤孔隙水分析 26
2.4.4 秧苗培育 30
2.4.5 盆栽試驗 30
2.4.6 植體總砷、鐵、磷含量分析 31
2.4.7 植體矽含量分析 31
2.5 統計分析 32
第三章、 結果與討論 33
3.1 供試土壤基本性質及總砷濃度 33
3.2 土壤孔隙水中 pH 及 Eh 值變化 36
3.3 土壤孔隙水中矽及總砷濃度變化 41
3.4 土壤孔隙水中砷物種之變化 47
3.5 水稻幼苗盆栽試驗生長情形 56
3.6 水稻幼苗植體中矽之濃度 62
3.7 水稻幼苗植體中砷之濃度 64
3.8 土壤孔隙水中矽砷比值與水稻幼苗之關係 67
第四章、 結論 74
第五章、 參考文獻 75
第六章、 附錄 84
dc.language.isozh-TW
dc.subject水田土壤zh_TW
dc.subject水稻zh_TW
dc.subject矽zh_TW
dc.subject砷zh_TW
dc.subject葉面施矽zh_TW
dc.subjectfoliar Si applicationen
dc.subjectriceen
dc.subjectpaddy soilen
dc.subjectsiliconen
dc.subjectarsenicen
dc.title葉面與土壤施用矽酸鈉對種植於砷污染土壤水稻幼苗砷累積之影響zh_TW
dc.titleEffect of Foliar and Soil Application of Sodium Silicate on Arsenic Accumulation in Rice Seedlings Grown in As-Contaminated Paddy Soilsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁炫,陳尊賢,王尚禮,鍾仁賜
dc.subject.keyword水稻,矽,砷,葉面施矽,水田土壤,zh_TW
dc.subject.keywordrice,silicon,arsenic,foliar Si application,paddy soil,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2015-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved