Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53854
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文澧(Win-Li Lin)
dc.contributor.authorLi-Chen Chiuen
dc.contributor.author邱俐貞zh_TW
dc.date.accessioned2021-06-16T02:31:28Z-
dc.date.available2017-08-03
dc.date.copyright2015-08-03
dc.date.issued2015
dc.date.submitted2015-07-30
dc.identifier.citation1. Hanahan D and Weinberg RA, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
2. Wright SC, Zhong J, and Larrick JW, Inhibition of apoptosis as a mechanism of tumor promotion. FASEB Journal, 1994. 8(9): p. 654-60.
3. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, and Reddel RR, Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Medicine, 1997. 3(11): p. 1271-4.
4. Hanahan D and Folkman J, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996. 86(3): p. 353-64.
5. Hillen F and Griffioen AW, Tumour vascularization: sprouting angiogenesis and beyond. Cancer and Metastasis Reviews, 2007. 26(3-4): p. 489-502.
6. Kerbel RS, Tumor angiogenesis: past, present and the near future. Carcinogenesis, 2000. 21(3): p. 505-15.
7. Folkman J, Angiogenesis: initiation and control. Annals of the New York Academy of Sciences, 1982. 401: p. 212-27.
8. Sriraman SK, Aryasomayajula B, and Torchilin VP, Barriers to drug delivery in solid tumors. Tissue Barriers, 2014. 2: p. e29528.
9. Jain RK, Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Reviews, 1990. 9(3): p. 253-66.
10. Junttila MR and de Sauvage FJ, Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013. 501(7467): p. 346-54.
11. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, and Jain RK., Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Research, 2000.60(9): p. 2497-503.
12. Kuppen PJ, van der Eb MM, Jonges LE, Hagenaars M, Hokland ME, Nannmark U, Goldfarb RH, Basse PH, Fleuren GJ, Hoeben RC, and van de Velde CJ, Tumor structure and extracellular matrix as a possible barrier for therapeutic approaches using immune cells or adenoviruses in colorectal cancer. Histochemistry and Cell Biology, 2001. 115(1): p. 67-72.
13. Vander Heiden MG, Cantley LC, and Thompson CB, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33.
14. Upreti M, Jyoti A, and Sethi P, Tumor microenvironment and nanotherapeutics. Translational Cancer Research, 2013. 2(4): p. 309-319.
15. Borst P, Evers R, Kool M, and Wijnholds J, A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 2000. 92(16): p. 1295-302.
16. Allen TM and Cullis PR, Drug delivery systems: entering the mainstream. Science, 2004. 303(5665): p. 1818-22.
17. Haley B and Frenkel E, Nanoparticles for drug delivery in cancer treatment. Urologic Oncology, 2008. 26(1): p. 57-64.
18. Matsumura Y and Maeda H, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 1986. 46(12 Pt 1): p. 6387-92.
19. Maeda H, Wu J, Sawa T, Matsumura Y, and Hori K, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 65(1-2): p. 271-84.
20. Gabizon A and Martin F, Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs, 1997. 54 Suppl 4: p. 15-21.
21. Lao J, Madani J, Puértolas T, Alvarez M, Hernández A, Pazo-Cid R, Artal A, and Antón Torres A, Liposomal Doxorubicin in the treatment of breast cancer patients: a review. Journal of Drug Delivery, 2013. 2013: p. 456409.
22. Arthur RM, Straube WL, Trobaugh JW, and Moros EG, Non-invasive estimation of hyperthermia temperatures with ultrasound. International Journal of Hyperthermia, 2005. 21(6): p. 589-600.
23. Fiorentini G and Szasz A, Hyperthermia today: electric energy, a new opportunity in cancer treatment. Journal of Cancer Research and Therapeutics, 2006. 2(2): p. 41-6.
24. Diederich CJ and Hynynen K, Ultrasound technology for hyperthermia. Ultrasound in Medicine and Biology, 1999. 25(6): p. 871-87.
25. Kong G, Braun RD, and Dewhirst MW, Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Research, 2001. 61(7): p. 3027-32.
26. Li L, ten Hagen TL, Bolkestein M, Gasselhuber A, Yatvin J, van Rhoon GC, Eggermont AM, Haemmerich D, and Koning GA, Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. Journal of Controlled Release, 2013. 167(2): p. 130-7.
27. Lai CY, Fite BZ, and Ferrara KW, Ultrasonic enhancement of drug penetration in solid tumors. Frontiers in Oncology, 2013. 3: p. 204.
28. Liu P, Zhang A, Xu Y, and Xu LX, Study of non-uniform nanoparticle liposome extravasation in tumour. International Journal of Hyperthermia, 2005. 21(3): p. 259-70.
29. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD 3rd, Dupuy DE, Gervais DA, Gillams AR, Kane RA, Lee FT Jr, Livraghi T, McGahan J, Phillips DA, Rhim H, Silverman SG, Solbiati L, Vogl TJ, Wood BJ, Vedantham S, and Sacks D, Image-guided tumor ablation: standardization of terminology and reporting criteria. Journal of Vascular and Interventional Radiology, 2009. 20(7 Suppl): p. S377-90.
30. O'Neal DP, Hirsch LR, Halas NJ, Payne JD, and West JL, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters, 2004. 209(2): p. 171-6.
31. Pearson AS, Izzo F, Fleming RY, Ellis LM, Delrio P, Roh MS, Granchi J, and Curley SA, Intraoperative radiofrequency ablation or cryoablation for hepatic malignancies. The American Journal of Surgery, 1999. 178(6): p. 592-9.
32. Goldberg SN, Radiofrequency tumor ablation: principles and techniques. European Journal of Ultrasound, 2001. 13(2): p. 129-47.
33. Kennedy JE, High-intensity focused ultrasound in the treatment of solid tumours. Nature Reviews Cancer, 2005. 5(4): p. 321-7.
34. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, and Hwang JH, High-intensity focused ultrasound: current potential and oncologic applications. AJR. American journal of roentgenology, 2008. 190(1): p. 191-9.
35. Wang Z, Bai J, Li F, Du Y, Wen S, Hu K, Xu G, Ma P, Yin N, Chen W, Wu F, and Feng R, Study of a 'biological focal region' of high-intensity focused ultrasound. Ultrasound in Medicine and Biology, 2003. 29(5): p. 749-54.
36. Tomayko MM and Reynolds CP, Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemotherapy and Pharmacology, 1989. 24(3): p. 148-54.
37. Lin CY, Li JR, Tseng HC, Wu MF, Lin WL, Enhancement of focused ultrasound with microbubbles on the treatments of anticancer nanodrug in mouse tumors. Nanomedicine, 2012. 8(6): p. 900-7.
38. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, and Altman RB, Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics, 2011. 21(7): p. 440-6.
39. Gabizon A, Tzemach D, Mak L, Bronstein M, and Horowitz AT, Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. Journal of Drug Targeting, 2002. 10(7): p. 539-48.
40. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, and Barenholz Y, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Research, 1994. 54(4): p. 987-92.
41. Huxley VH and Curry FE, Differential actions of albumin and plasma on capillary solute permeability. American Journal of Physiology, 1991. 260(5 Pt 2): p. H1645-54.
42. Rawson RA, The binding of T-1824 and structurally related diazo dyes by the plasma proteins. American Journal of Physiology--Legacy Content, 1943. 138(5): p. 708-717.
43. Chen B, Pogue BW, Luna JM, Hardman RL, Hoopes PJ, and Hasan T, Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clinical Cancer Research, 2006. 12(3 Pt 1): p. 917-23.
44. Saria A and Lundberg JM, Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. Journal of Neuroscience Methods, 1983. 8(1): p. 41-9.
45. Kratz F, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 2008. 132(3): p. 171-83.
46. Taguchi K, Chuang VT, Maruyama T, and Otagiri M, Pharmaceutical aspects of the recombinant human serum albumin dimer: structural characteristics, biological properties, and medical applications. Journal of Pharmaceutical Sciences, 2012. 101(9): p. 3033-46.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53854-
dc.description.abstract研究背景:
奈米抗癌藥物是透過腫瘤新生之微血管傳輸,從疏鬆的血管內皮孔洞滲漏出,當腫瘤體積較大時,內部血管發育不全,加上組織間質的壓力及血管間距增加,導致藥物無法有效輸送到整個腫瘤組織以達到全面的治療。
研究目標:
本研究之目的在於將奈米藥物結合超音波熱治療提升腫瘤外部血流灌注量來增加藥物之傳遞,再針對循環不佳部分進行超音波熱燒灼手術,以增進整體腫瘤治療效益。
材料與方法:
本實驗使用年齡4~8周,體重18~22公克之BALB/c母鼠,將10^6個小鼠乳癌細胞 4T1 植入小鼠右側背部皮下。使用物理治療用的1 MHz平面探頭進行熱治療,及0.47 MHz的聚焦型探頭進行熱燒灼手術。實驗組別依 PLD 劑量分為5 mg/kg 及3 mg/kg 兩大群;再依治療方式分為四組:Control 組、PLD 組、PLD 搭配熱治療(42°C 10 min)組、及PLD加上熱燒灼(56°C)搭配熱治療組。腫瘤在植入後每天利用電子式游標尺量測腫瘤體積並拍照記錄、及利用電子天平測量小鼠體重,於腫瘤長至 250-350 mm^3 開始進行第一次治療、隔五天後進行第二次治療,並持續觀察到第 12 天。在治療前、治療期間及治療後利用非侵入式活體分子影像系統(In Vivo Image System, IVIS)觀測腫瘤細胞數量變化,並在小鼠犧牲後進行腫瘤組織切片H&E染色分析。
結果:
施打PLD劑量為5 mg/kg 的三組腫瘤體積皆比Control組小且具有顯著差異,而PLD+熱治療組的腫瘤體積又比PLD組小,亦具有顯著差異。而在打入PLD後,針對腫瘤中心部分進行熱燒灼手術、再輔以熱治療的組別,其腫瘤體積外觀上則和PLD+熱治療組無顯著差異。若將PLD劑量減為3 mg/kg,則有施打PLD的三組腫瘤體積生長仍和Control組相比具有顯著差異,且PLD+熱治療組和PLD 組亦有顯著差異,PLD+熱燒灼+熱治療組和 PLD+熱治療組相比也有顯著差異。在活體分子影像部分,無論 PLD 劑量高低,Control組平均光子值皆比PLD組高,而PLD組別也比經過超音波治療的組別高,最後兩組之間差異並不明顯。從組織 H&E染色切片的結果也可看到,經過PLD加上熱治療的組織會聚集相當多單核球,胞外基質也較鬆散,而再加入熱燒灼手術的組別腫瘤組織則幾乎完全被破壞。
結論:
熱治療確實能提升PLD在腫瘤中累積的濃度並增加其治療效益,但在較高劑量藥物(5 mg/kg)施打下,由於藥物本身就具有優異療效,加入熱燒灼手術並不會和單給熱治療的組別有太大治療效益差別;不過在較低劑量藥物(3 mg/kg)施打下,輔以熱燒灼手術,就能顯著提升藥物及熱治療對腫瘤的療效。
zh_TW
dc.description.abstractBackground:
Anti-cancer nanodrugs can pass through leaky tumor vessels to achieve therapeutic purposes. When the tumor volume is large, the interior part forms coagulation necrosis, resulting in increased interstitial pressure and distance between blood vessels to hinder drug transport.
Purpose:
The purpose of this study is to combine nanodrug(PLD) with ultrasound hyperthermia to enhance the drug delivery in the peripheral region of tumors, and ultrasound ablation surgery for poor circulation region to achieve the overall treatment efficacy.
Materials and methods:
In this study, BALB/c female mice weighting from 18 to 22 g were used. Murine breast cancer cells 4T1(106 cells) were subcutaneously implanted into the mice's back. Hyperthermia was induced by a 1-MHz plane ultrasound transducer, and ablation surgery was conducted by a 0.47-MHz focus ultrasound transducer. Experimental groups were divided into two parts: 5 mg PLD/kg and 3 mg PLD/kg. Each part was divided into four groups: control group, PLD group, PLD+hyperthermia(42°C 10 min) group, and PLD+ablation(56°C)+hyperthermia group. When the tumor grew up to 250-350 mm3, the first treatment was conducted, and five days later for the second treatment. Body weight and tumor volume were measured every day. The tumor change was also quantified by In-Vivo Image System(IVIS) before and after the treatments. H&E histological staining was also used to analyze the tumor tissues.  
Results:
The tumors treated with 5 mg PLD/kg were significantly smaller than the control group. The tumor size of the PLD+hyperthermia group was significantly smaller than the PLD group. However, there was no significant difference between the PLD+hyperthermia group and the PLD+ablation+hyperthermia group. When the PLD dose was reduced to 3 mg/kg, the tumors treated with PLD were smaller than the control group. The tumor size of the PLD+ablation+hyperthermia group was significantly smaller than the PLD+hyperthermia group. The result of IVIS image showed that both 5 mg PLD/kg and 3 mg PLD/kg resulted in lower photon signals than the control group. The groups conducted with additional ultrasound therapy showed lower photon signals than the PLD alone group. Nevertheless, there was no significant difference between the PLD+ablation+hyperthermia group and the PLD+hyperthermia group. The H&E tumor histological staining showed that hyperthermia could induce inflammation, and the ablated tumor tissues were seriously destroyed and looser than the other three groups.
Conclusion:
Hyperthermia could increase nanodrug accumulation in tumor tissues and improve therapeutic efficacy. When a high dose of nanodrug(5 mg/kg) was used, additional ablation could not significantly improve therapeutic results. On the other side, the combination of hyperthermia and ablation could significantly enhance the treatment efficacy for a low dose of nanodrug(3 mg/kg).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:31:28Z (GMT). No. of bitstreams: 1
ntu-104-R02548022-1.pdf: 3743221 bytes, checksum: fc26f64137d83be735fd347c66f1d6d4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 .......i
中文摘要 ...ii
Abstract ...iv
目錄 .......vi
圖目錄 .....ix
表目錄 .....xi
第一章 緒論 ................ 1
1.1 腫瘤 ....................1
1.2 腫瘤血管新生 ........... 1
1.3 腫瘤藥物傳輸障壁 ....... 2
1.4 藥物傳輸系統與奈米粒子 . 3
1.5 超音波治療 ............. 4
1.5.1 熱治療 ............... 5
1.5.2 熱燒灼手術 ........... 6
1.6 研究目的 ............... 7
第二章 材料與方法 .......... 8
2.1 腫瘤細胞株 ............. 8
2.2 動物實驗 ............... 8
2.3 奈米抗癌藥物 ........... 9
2.4 熱治療超音波系統 ....... 9
2.5 熱燒灼手術超音波系統 .. 10
2.6 超音波熱治療及熱燒灼手術溫度測試 ..10
2.7 超音波探頭特性測試 ............... 12
2.7.1 物理治療用平面探頭壓力分布情形 . 12
2.7.2 聚焦型探頭施打能量測試 ......... 12
2.8 Evans blue 在小鼠腫瘤內循環範圍實驗 .. 13
2.9 雷射都普勒血流計 ................. 13
2.10 組織內藥物累積濃度定量 .......... 14
2.10.1 Doxorubicin 萃取流程 .......... 15
2.10.2 Evans blue 萃取流程 ........... 16
2.11 腫瘤經燒灼後解剖構造 ............ 17
2.12 非侵入式活體分子影像系統 ........ 17
2.13 實驗設計及流程 .................. 17
2.14 數值統計及分析 .................. 19
第三章 結果與討論 .................... 20
3.1 超音波熱治療及熱燒灼手術溫度測試 . 20
3.1.1 超音波熱治療溫度測試 ........... 20
3.1.2 超音波熱燒灼溫度測試 ........... 21
3.2 超音波探頭特性測試 ............... 21
3.2.1 物理治療用平面探頭壓力分布情形 . 21
3.2.2 聚焦型探頭功率測試 ............. 23
3.3 Evans blue 在小鼠腫瘤內循環範圍 .. 24
3.4 血流都普勒實驗 ................... 25
3.5 組織內藥物累積濃度定量 ........... 26
3.5.1 Doxorubicin 在組織中累積濃度 ... 26
3.5.2 Evans blue 在組織中累積濃度..... 27
3.6 腫瘤經燒灼後解剖構造 ............. 28
3.7 治療實驗組腫瘤體積變化 ........... 29
3.7.1 在注射 PLD 5 mg/kg 下,各組的腫瘤體積變化比較 .. 29
3.7.2 在注射 PLD 3 mg/kg 下,各組的腫瘤體積變化比較 .. 30
3.8 分子生物影像結果 ..................................36
3.8.1 在注射 PLD 5 mg/kg 下,各實驗組結果比較 ........ 36
3.8.2 在注射 PLD 3 mg/kg 下,各實驗組結果比較 ........ 36
3.8.3 分子生物影像實驗結果與腫瘤體積外觀變化比較之討論 37
3.9 各組腫瘤組織切片結果 ............. 41
3.10 各組小鼠體重變化 ................ 44
第四章 結論與未來展望 ................ 46
第五章 參考文獻 ...................... 48
dc.language.isozh-TW
dc.title探討奈米藥物結合超音波熱治療及熱手術對腫瘤之療效zh_TW
dc.titleInvestigation of Nanodrug Combined with Ultrasound Hyperthermia and Thermal Ablation for Tumor Treatmenten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝銘鈞(Ming-Jium Shieh),張富雄(Fu-Hsiung Chang),陳景欣(Gin-Shin Chen)
dc.subject.keyword腫瘤治療,奈米藥物,超音波,熱治療,熱燒灼手術,zh_TW
dc.subject.keywordtumor treatment,nanodrug,ultrasound,hyperthermia,ablation,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2015-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
3.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved