Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53847
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇
dc.contributor.authorGuan-Yu Linen
dc.contributor.author林冠宇zh_TW
dc.date.accessioned2021-06-16T02:31:16Z-
dc.date.available2017-07-17
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-07-30
dc.identifier.citation[1] Cisco. cisco visual networking index: Global mobile data traffic forecast update, 2013– 2018. available online:. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/white_paper_c11-520862.html. Accessed:2015-04-28.
[2] 3GPP TS 22.368 V13.1.0. Technical Specification Group Services and System Aspects; Service requirements for Machine-Type Communications (MTC). Dec.2014.
[3] 3GPP TS 36.321 V12.4.0. E-UTRA Medium Access Control (MAC) Protocol Specification. Dec. 2014.
[4] S.Y. Lien, K.C. Chen, and Y. Lin. Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Commun. Mag, 49(4):66–74, 2011.
[5] Ming-Yuan Cheng, Guan-Yu Lin, Hung-Yu Wei, and AC-C Hsu. Overload control for machine-type-communications in LTE-Advanced system. IEEE Commun. Mag, 50(6):38–45, 2012.
[6] 3GPP TR 37.868 V11.0.0. Study on RAN Improvements for Machine-type Communications. Sep. 2011.
[7] Tzu-Ming Lin, Chia-Han Lee, Jen-Po Cheng, and Wen-Tsuen Chen. PRADA: Prioritized Random Access With Dynamic Access Barring for MTC in 3GPP LTE-A Networks. IEEE Trans. Veh. Technol., 63(5):2467–2472, Jun. 2014.
[8] L. Sun, Y. Gao, H. Tian, H. Xu, and P. Zhang. An Adaptive Random Access Protocol for OFDMA System. In IEEE VTC, pages 1827–1831, Fall, 2007.
[9] P. Choudhary, A. Ghosh, and L. Jalloul. Simulated performance of W-CDMA random access channel. In IEEE VTC, volume 4, pages 2700–2704, Spring, 2001.
[10] C. Pereira and A. Aguiar. Towards Efficient Mobile M2M Communications: Survey and Open Challenges. Sensors, 14(10).
[11] IDC. Press Release —The Internet of Things Is Poised to Change Everything, Says IDC. http://www.businesswire.com/news/home/20131003005687/en/Internet-Poised-Change-IDC# .VUCqmyHzqUk. Accessed: 2015-04-28.
[12] S1-113005: Report of 3GPP TSG-SA WG1 Meeting #55. Dublin, Ireland, 8th –12th, Aug. 2011.
[13] 3GPP TR 36.888 V12.0.0. Technical Specification Group Radio Access Network; Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12). Jun. 2013.
[14] 3GPP TR 37.869 V12.0.0. Technical Specification Group Radio Access Network; Study on Enhancements to Machine-Type Communications (MTC) and other Mobile
Data Applications; Radio Access Network (RAN) aspects (Release 12)). Sep. 2013.
[15] 3GPP TR 23.887 V12.0.0. Technical Specification Group Services and System Aspects; Study on Machine-Type Communications (MTC) and other mobile data applications communications enhancements (Release 12). Dec. 2013.
[16] IEEE Standard for Air Interface for Broadband Wireless Access Systems–Amendment 1: Enhancements to Support Machine-to-Machine Applications. IEEE Std
802.16p-2012 (Amendment to IEEE Std 802.16-2012), pages 1–82, Oct 2012.
[17] IEEE 802.16’s Machine-to-Machine (M2M) Task Group. http://ieee802.org/16/m2m/. Accessed: 2015-04-30.
[18] Weightless. http://www.weightless.org/.
[19] William Webb. Weightless: The technology to finally realise the m2m vision. International Journal of Interdisciplinary Telecommunications and Networking (IJITN), 4(2):30–37, 2012.
[20] William Webb. Understanding Weightless: Technology, Equipment, and Network Deployment for M2M Communications in White Space. Cambridge University Press, 2012.
[21] A Choice of Future m2m Access Technologies for Mobile Network Operators.
http://www.cambridgewireless.co.uk/docs/Cellular%
20IoT%20White%20Paper.pdf. Accessed: 2015-04-28.
[22] Neul. GP-140435: Outline proposal for “clean-slate” physical layer for IoT.
Agenda item 7.1.5.3.5, 3GPP TSG GERAN #63, Aug. 2014.
[23] IBM Long-Range Signaling and Control (LRSC). http://www.research.ibm.com/labs/zurich/ics/lrsc/lmic.html. Accessed: 2015-04-28.
[24] Semtech LoRa. http://www.semtech.com/wireless-rf/lora.html. Accessed: 2015-04-28.
[25] SigFox White Paper. http://www.sigfox.com/static/media/
Files/Documentation/SIGFOX_Whitepaper.pdf. Accessed: 2015-04-28.
[26] SigFox Keys for scalable M2M/IoT networks. http://www.microwave-rf.com/docs/WaveRF-2014-SIGFOX.pdf. Accessed: 2015-04-28.
[27] 3GPP TR 36.331 V12.5.0. Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC); Protocol specification (Release 12). Mar. 2015.
[28] R. Cheng, J. Chen, D. Chen, and C. Wei. Modeling and Analysis of an Extended Access Barring Scheme for Machine-Type Communications in LTE Networks. IEEE
Trans. Wireless Commun., PP(99):1–1, 2015.
[29] Daehee Kim, Wook Kim, and Sunshin An. Adaptive random access preamble split in LTE. In 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pages 814–819, Jul. 2013.
[30] Chie Ming Chou, Ching Yao Huang, and Chun-Yuan Chiu. Loading prediction and barring controls for machine type communication. In 2013 IEEE International Conference on Communications (ICC), pages 5168–5172, Jun. 2013.
[31] Sen-Hung Wang, Hsuan-Jung Su, Hung-Yun Hsieh, Shu ping Yeh, and M. Ho. Random access design for clustered wireless machine to machine networks. In 2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom), pages 107–111, Jul. 2013.
[32] M. Condoluci, M. Dohler, G. Araniti, A. Molinaro, and Kan Zheng. Toward 5G densenets: architectural advances for effective machine-type communications over
femtocells. IEEE Commun. Mag, 53(1):134–141, Jan. 2015.
[33] P.K. Wali and D. Das. A novel access scheme for IoT communications in LTE-Advanced network. In 2014 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), pages 1–6, Dec. 2014.
[34] Rung-Shiang Cheng, Chung-Ming Huang, and Guan-Shiun Cheng. A D2D cooperative relay scheme for machine-to-machine communication in the LTE-A cellular network. In 2015 International Conference on Information Networking (ICOIN), pages 153–158, Jan. 2015.
[35] Chia-Hung Wei, Ray-Guang Cheng, and Shiao-Li Tsao. Performance Analysis of Group Paging for Machine-Type Communications in LTE Networks. IEEE Trans. Veh. Technol, 62(7):3371–3382, Sep. 2013.
[36] O. Arouk, A. Ksentini, Y. Hadjadj-Aoul, and T. Taleb. On improving the group paging method for machine-type-communications. In 2014 IEEE International Conference on Communications (ICC), pages 484–489, Jun. 2014.
[37] Ruki Harwahyu, Ray-Guang Cheng, and Riri Fitri Sari. Consecutive group paging for LTE networks supporting machine-type communications services. In 2013
IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pages 1619–1623, Sep. 2013.
[38] Shao-Yu Lien, Tzu-Huan Liau, Ching-Yueh Kao, and Kwang-Cheng Chen. Cooperative Access Class Barring for Machine-to-Machine Communications. IEEE Trans. Wireless Commun., 11(1):27–32, Jan. 2012.
[39] P. Osti, S. Aalto, and P. Lassila. Load Balancing for M2M Random Access in LTE HetNets. In 2014 IEEE 22nd International Symposium on Modelling, Analysis,
Simulation of Computer and Telecommunication Systems (MASCOTS), pages 132–141, Sep. 2014.
[40] Yi-Huai Hsu, Kuochen Wang, and Yu-Chee Tseng. Enhanced cooperative access class barring and traffic adaptive radio resource management for M2M communications
over LTE-A. In 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pages 1–6, Oct. 2013.
[41] Chia-Wei Chang, Jyh-Cheng Chen, Chien Chen, and Rong-Hong Jan. Scattering random-access intensity in LTE Machine-to-Machine (M2M) communications. In 2013 IEEE Global Communications Conference (GLOBECOM), pages 4729–4734, Dec. 2013.
[42] Tingsong Jiang, Xu Tan, Xi Luan, Xiaoning Zhang, and Jianjun Wu. Evolutionary game based access class barring for machine-to-machine communications. In 2014 16th International Conference on Advanced Communication Technology (ICACT), pages 832–835, Feb. 2014.
[43] D.T. Wiriaatmadja and Kae Won Choi. Hybrid Random Access and Data Transmission Protocol for Machine-to-Machine Communications in Cellular Networks.
IEEE Trans. Wireless Commun., 14(1):33–46, Jan. 2015.
[44] C. Oh, D. Hwang, and T. Lee. Joint Access Control and Resource Allocation for Concurrent and Massive Access of M2M Devices. IEEE Trans. Wireless Commun., PP(99):1–1, 2015.
[45] Guan-Yu Lin, Shi-Rong Chang, and Hung-Yu Wei. Estimation and Adaptation for Bursty LTE Random Access. IEEE Trans. Veh. Technol., PP(99):1–1, 2015.
[46] A. Laya, L. Alonso, and J. Alonso-Zarate. Is the Random Access Channel of LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives. Commun.
Surveys Tuts., 16(1):4–16, First 2014.
[47] L. Alonso, R. Agustí, and O. Sallent. A near-optimum MAC protocol based on the distributed queueing random access protocol (DQRAP) for a CDMA mobile communication system. IEEE J. Sel. Areas Commun., 18(9):1701–1718, Sep. 2000.
[48] G.C. Madueno, S. Stefanovic, and P. Popovski. Efficient LTE access with collision resolution for massive M2M communications. In 2014 Globecom Workshops (GC Wkshps), pages 1433–1438, Dec. 2014.
[49] N.K. Pratas, H. Thomsen, C. Stefanovic, and P. Popovski. Code-expanded random access for machine-type communications. In 2012 IEEE Globecom Workshops (GC
Wkshps), pages 1681–1686, Dec. 2012.
[50] J.S. Kim, D. Munir, S.F. Hasan, and M.Y. Chung. Enhancement of LTE RACH through extended random access process. Electronics Letters, 50(19):1399–1400,
Sep. 2014.
[51] Kookjin Lee, JaeSheung Shin, Yongwoo Cho, Kab Seok Ko, Dan Keun Sung, and Heonshik Shin. A group-based communication scheme based on the location information
of MTC devices in cellular networks. In 2012 IEEE International Conference on Communications (ICC), pages 4899–4903, Jun. 2012.
[52] Kab Seok Ko, Min Jeong Kim, Kuk Yeol Bae, Dan Keun Sung, Jae Heung Kim, and Jae Young Ahn. A Novel Random Access for Fixed-Location Machine-to-Machine Communications in OFDMA Based Systems. IEEE Commun. Lett., 16(9):1428–1431, Sep. 2012.
[53] Zehua Wang and V.W.S. Wong. Joint access class barring and timing advance model for machine-type communications. In 2014 IEEE International Conference
on Communications (ICC), pages 2357–2362, Jun. 2014.
[54] Han Seung Jang, Su Min Kim, Kab Seok Ko, Jiyoung Cha, and Dan Keun Sung. Spatial Group Based Random Access for M2M Communications. IEEE Commun. Lett., 18(6):961–964, Jun. 2014.
[55] Wei Zou, Zhenhong Li, and Haifeng Wang. Small data transmission at the detached machine-type-communication device. In 2012 IEEE 23rd International Symposium
on Personal Indoor and Mobile Radio Communications (PIMRC), pages 13–17, Sep. 2012.
[56] Kaijie Zhou, N. Nikaein, and R. Knopp. Dynamic resource allocation for machine type communications in LTE/LTE-A with contention-based access. In 2013 IEEE
Wireless Communications and Networking Conference (WCNC), pages 256–261, Apr. 2013.
[57] G. Wunder, P. Jung, and Chen Wang. Compressive random access for post-LTE systems. In 2014 IEEE International Conference on Communications Workshops
(ICC), pages 539–544, Jun. 2014.
[58] G. Wunder, H. Boche, T. Strohmer, and P. Jung. Sparse Signal Processing Concepts for Efficient 5G System Design. IEEE Access, 3:195–208, 2015.
[59] Roger B Myerson. Game theory: analysis of conflict. Harvard University, 1991.
[60] Eric Rasmusen. Games and information : an introduction to game theory. Blackwell Pub., 2007.
[61] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, 1944.
[62] Dusit Niyato and Walid Saad. Game Theory in Wireless and Communication Networks. Cambridge University Press, 2011.
[63] David C Parkes. Classic mechanism design. Iterative Combinatorial Auctions: Achieving Economic and Computational Efficiency. Ph. D. dissertation, University
of Pennsylvania, 2001.
[64] Vijay Krishna. Auction theory. Academic press, 2009.
[65] J.B. Rao and A.O. Fapojuwo. A Survey of Energy Efficient Resource Management Techniques for Multicell Cellular Networks. IEEE COMMUN SURV TUT, 16(1): 154–180, First 2014.
[66] D. Niyato and E. Hossain. Competitive Pricing in Heterogeneous Wireless Access Networks: Issues and Approaches. IEEE Network, 22(6):4–11, November 2008.
[67] K. Akkarajitsakul, E. Hossain, D. Niyato, and Dong In Kim. Game Theoretic Approaches for Multiple Access in Wireless Networks: A Survey. IEEE COMMUN SURV TUT, 13(3):372–395, Third 2011.
[68] M. Ghazvini, N. Movahedinia, K. Jamshidi, and N. Moghim. Game Theory Applications in CSMA Methods. IEEE COMMUN SURV TUT, 15(3):1062–1087, Third 2013.
[69] Xiannuan Liang and Yang Xiao. Game Theory for Network Security. IEEE COMMUN SURV TUT, 15(1):472–486, First 2013.
[70] Fotini-Niovi Pavlidou and Georgios Koltsidas. Game theory for routing modeling in communication networks—A survey. Journal of Communications and Networks,
10(3):268–286, Sept 2008.
[71] Dejun Yang, Xi Fang, and Guoliang Xue. Game theory in cooperative communications. IEEE Wireless Communications, 19(2):44–49, April 2012.
[72] Ramona Trestian, Olga Ormond, and Gabriel-Miro Muntean. Game Theory-Based Network Selection: Solutions and Challenges. IEEE COMMUN SURV TUT, 14(4): 1212–1231, Fourth 2012.
[73] Chungang Yang, Jiandong Li, and A. Anpalagan. Strategic bargaining in wireless networks: basics, opportunities and challenges. IET Communications, 8(18):3435–3450, 2014.
[74] V. Srivastava, J. Neel, A.B. MacKenzie, R. Menon, L.A. Dasilva, J.E. Hicks, J.H. Reed, and R.P. Gilles. Using game theory to analyze wireless ad hoc networks.
IEEE COMMUN SURV TUT, 7(4):46–56, Fourth 2005.
[75] ETSI TS 102 689 v1.1.1 (2010-08): Machine-to-machine communications; M2M service requirements. Aug. 2010.
[76] 3GPP website. www.3gpp.org.
[77] MediaTek Inc. RAN overload handling. 3GPP TSG RAN WG2 Meeting 71, May 2011.
[78] 3GPP TS 36.300 V1.0.0 (2007-03). Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 10) . Mar. 2012.
[79] 3GPP TR 36.912 V10.0.0 (2011-03). Feasibility study for Further Advancements for E-UTRA. Mar. 2011.
[80] 3GPP R2-112863, “Backoff enhancements for RAN overload control” ZTE, Barcelona, Spain. May. 2011.
[81] 3GPP R2-105484, “On the Need for New Establishment Causes for Devices Configured for MTC-LTE”, Vodafone, Xi’an, China , 11 Oct- 15 Oct, 2010 .
[82] 3GPP R2-111634, “Report of 3GPP TSG RAN WG2 meeting # 72bis”, ETSI MCC, Dublin, Ireland, January 17 - 21, 2011 .
[83] 3GPP TR 23.888 V1.6.1 (2012-02). Technical Specification Group Services and System Aspects; System Improvements for Machine-Type Communications (Release
11). Dec. 2012.
[84] Huawei. R2-105634: Email discussion output - [71# 52] UMTS/LTE: MTC - Simulations assumptions and output. Technical report, 3GPP TSG RAN WG2 # 71bis, Oct. 11-15, 2010.
[85] L. Chen, S.H. Low, and J.C. Doyle. Contention control: A game-theoretic approach. In 2007 46th IEEE Conference on Decision and Control, pages 3428–
3434. IEEE, 2007.
[86] Y. Yang and T.S.P. Yum. Throughput analysis of RACH in UTRA-TDD on AWGN channel. In IEEE VTC, volume 2, pages 572–575, Fall, 2001.
[87] I. Koo, S. Shin, and K. Kim. Performance analysis of random access channel in OFDMA systems. Systems Communications, Springer, 2005.
[88] R.D. Soares and J.M.C. Brito. Throughput Analysis of Random Access Channel of the UMTS system. International Conference on Wireless and Mobile Communications,
pages 20–20, Jul. 2006.
[89] J. He, Z. Tang, D. Kaleshi, and A. Munro. Simple analytical model for the random access channel in WCDMA. IET Electronics Letters, 43(19):1034–1036, 2007.
[90] I.N. Vukovic and T. Brown. Performance analysis of the random access channel
(RACH) in WCDMA. In IEEE VTC, volume 1, pages 532–536, Spring, 2001.
[91] P. Zhou, H. Hu, H. Wang, and H.H. Chen. An efficient random access scheme for OFDMA systems with implicit message transmission. IEEE Trans. Wireless Commun, 7(7):2790–2797, 2008.
[92] Chia-Hung Wei, Ray-Guang Cheng, and Shiao-Li Tsao. Modeling and Estimation of One-Shot Random Access for Finite-User Multichannel Slotted ALOHA Systems.
IEEE Commun. Lett., 16(8):1196–1199, Aug. 2012.
[93] P. Osti, P. Lassila, S. Aalto, A Larmo, and T. Tirronen. Analysis of PDCCH performance for M2M traffic in LTE. IEEE Trans. Veh. Technol, 63(9):4357–4371, Nov.
2014.
[94] Jun-Bae Seo and V.C.M. Leung. Design and Analysis of Backoff Algorithms for Random Access Channels in UMTS-LTE and IEEE 802.16 Systems. IEEE Trans. Veh. Technol, 60(8):3975–3989, Oct. 2011.
[95] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, volume 18. Wiley New York, 1988.
[96] Dimitri P Bertsekas. Introduction to Probability: Dimitri P. Bertsekas and John N. Tsitsiklis. Athena Scientific, 2002.
[97] Yuan-Chi Pang, Shih-Lung Chao, Guan-Yu Lin, and Hung-Yu Wei. Network access for M2M/H2H hybrid systems: a game theoretic approach. IEEE Commun. Lett., 18(5):845–848, May 2014.
[98] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks, volume 2. Prentice-hall Englewood Cliffs, NJ, 1987.
[99] M. Gerasimenko, V. Petrov, O. Galinina, S. Andreev, and Y. Koucheryavy. Impact of machine-type communications on energy and delay performance of random access channel in LTE-advanced. Transactions on Emerging Telecommunications Technologies, 24(4):366–377, 2013.
[100] Ki-Dong Lee, Sang Kim, and Byung Yi. Throughput comparison of random access methods for M2M service over LTE networks. In IEEE GLOBECOM Workshops, pages 373 –377, Dec. 2011.
[101] L. Chen T. Cui and S.H. Low. A Game-Theoretic Framework for Medium Access Control. IEEE J. Sel. Areas Commun., 26(7):1116–1127, 2008.
[102] Sangtae Ha, Soumya Sen, Carlee Joe-Wong, Youngbin Im, and Mung Chiang. Tube: time-dependent pricing for mobile data. ACM SIGCOMM Computer Communication
Review, 42(4):247–258, 2012.
[103] Guan-Yu Lin and Hung-Yu Wei. A multi-period resource auction scheme for machine-to-machine communications. In 2014 IEEE International Conference on
Communication Systems (ICCS), pages 177–181, Nov. 2014.
[104] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory, algorithms, and applications. 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53847-
dc.description.abstract行動裝置、機器對機器通訊、物聯網裝置在數量上以及產生的流量上的爆炸性成長,有很大可能性產生數量龐大的網路連線請求,因此引起了人們對於無線電接取網路的容量的注意。大量湧現的隨機存取需求不止導致嚴重的隨機存取前導信令碰撞,也造成下載資源匱乏,因此降低了隨機存取程序的效能。然而,下載資源匱乏對於系統效能的影響目前尚未被完整的研究。此外,大部分現有既存的隨機存取雍塞解決方案是用犧牲隨機存取率來換取較高的隨機存取成功機率,其代價就是低隨機存取率的方法需要很長的時間來處理所有接取的需求。
本博士論文,目的在解決機器對機器通訊的情境下所發生的隨機存取過載問題,由三個階段組成。在第一階段,我們總結了最好的隨機存取壅塞控制方法,並且藉由模擬深入研究它們的效能。經由第一階段的的研究,我們認為隨機存取的壅塞源自於過高的隨機存取前導信令傳輸率,也就是太多裝置同時競爭隨機存取資源。此外,大部分現存的方法都在隨機存取的成功機率與資源使用率這兩方面有所妥協。在第二階段,我們提出了一個隨機存取需求的估計方法,來估計有多少使用者裝置試圖進行網路連線。
有了這個估計的資訊,基地台就可以在保證滿意的隨機存取成功機率的情況下,大幅提升隨機存取率。此外,我們研究了下載資源匱乏與前導信令偵測機率對於隨機存取效能的影響。我們也得到了隨機存取延遲、隨機存取資源量、與隨機存取資源效率這三者的關係。在第三階段,我們使用賽局理論來處理不同種類裝置間的資源分配問題。我們研究機器對機器通訊與人類通訊在隨機存取方面的共存問題。我們也提出一個拍賣模型來處理不同機器對機器通訊類別的隨機存取流量在不同的時間區間上的分配問題,並且藉由第二階段提出的隨機存取估計方法,讓本拍賣模型所建議的最佳流量分配可以被實現。

這三階段的研究為隨機存取的壅塞控制提供了一套完整的解決方案,整合負載估計與資源分配的方法。所提出的負載估計方法可以在極少信另花費的情況下優異的運作,而資源分配的方法更可以在保證隨機存取成功機率的情況下,大幅提升隨機存取的資源效率。此外,我們也對集中式與分散式的資源分配架構提出新穎的設計,包括集中式的拍賣機制,與分散式的非合作賽局模型。
本博士論文的研究成果,詳實的提出關鍵性的負載估測技術與實用的資源配置方法,預期能在未來的蜂巢式物聯網網路中,對突然湧現且巨量的機器對機器隨機存取需求提供強而有力的支援。
zh_TW
dc.description.abstractWith the potential to generate numerous connection requests, an explosive growth in the volume of data traffic and the number of mobile, machine-to-machine (M2M), and Internet-of-Things (IoT) devices has drawn new attention on the capacity of radio access network (RAN). Surging random access attempts cause not only severe preamble collisions but also downlink resource shortage, and thus degrade the performance of random access procedure. However, the effect of downlink resource shortage on system performance is not yet comprehensively studied. In addition, most existing random access contention resolution mechanisms sacrifice RACH (random access channel) throughput for a high success probability, and thus the price is that low-throughput mechanisms need long time to deal with access attempts.
This dissertation, aiming to resolve RACH overload problems in M2M context, consists of 3-phase research.
In the phase I, we summarize the the-state-of-the-art methods for RACH overload control, and investigate their performance through simulations. Through Phase I research, we conclude that RACH contention stems from a high preamble transmission rate, i.e., too many devices send their preambles in the same random access resources. In addition, most existing methods have a compromising tradeoff between RACH success probability and RACH resource utilization. In phase II, we proposes a RACH attempt estimation method to estimate the number of UEs that are trying for network connection. With the estimated information, the base station can boost the RACH throughput while guaranteeing satisfactory RACH success probability. Moreover, we obtain the effect of downlink resource shortage and preamble detection probability on RACH performance. We also find the relation among access delay, RACH throughput, and resource efficiency. In phase III, we apply game theory to address the resource allocation problem among different types of devices. We study the coexistence problem of (H2H) human-to-human and M2M in RACH contention. We also propose an auction model to allocate RACH traffic from multiple M2M applications on multiple transmission periods, and make it implementable through the application of RACH attempt estimation proposed in phase II.
The 3-phase study provides a complete suit of solutions for RACH congestion control integrating RACH load estimation and RACH resource allocation. The proposed load estimation method works quite efficiently with little signaling cost, while the designed resource allocation methods significantly boost RACH throughput while guaranteeing RACH success probability. Moreover, we propose novel designs for both centralized and distributed resource allocation framework, i.e., centralized auction scheme, and distributed non-cooperative game model.
The research fruit of the dissertation, including key load estimation technique and practical resource allocation modelling, is expected to powerfully support the management of bursty and massive M2M random accesses in the future cellular IoT networks.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:31:16Z (GMT). No. of bitstreams: 1
ntu-104-F97921041-1.pdf: 3976143 bytes, checksum: a432a342ad5c3c9102361dbf0f3b05af (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
口試委員會審定書i
致謝iii
中文摘要v
Abstract vii
Contents ix
List of Figures xv
List of Tables xix
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Outline . . . . . . . . . . . . . . . .2
1.3 Contribution of Each Chapter . . . . . . . . . . . .7
1.3.1 Chapter 2: Overload Control for Machine-Type-Communications in LTE-Advanced System . . . . . . . . . 7
1.3.2 Chapter 3: MAC-level Performance Analysis of 4-Step RACH Procedure . . . . . . . . . . . . . . . . . . . . .7
1.3.3 Chapter 4: Estimation and Adaptation for Bursty LTE Random Access . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Chapter 5: Dynamic Resource Allocation for Cellular M2M Communications . . . . . . . . . . . . . . . . . . .8
1.3.5 Chapter 6: Network Access for M2M/H2H Hybrid Systems: A Game Theoretic Approach . . . . . . . . . . .9
1.3.6 Chapter 7: Auction-Based Random Access Load Control for Time-Dependent Machine-to-Machine Communications . .9
1.4 Preliminaries . . . . . . . . . . . . . . . . . . .11
1.4.1 Machine-to-Machine Communications . . . . . . . .11
1.4.2 Random Access Procedure . . . . . . . . . . . . .20
1.4.3 State of the Art for Random Access Load Control .23
1.4.4 Game Theory and Mechanism Design . . . . . . . . 27
Phase I. State-of-the-art survey and Simulation-based Performance Evaluation . . . . . . . . . . . . . . . . 32
2 Overload Control for Machine-Type-Communications in LTE-Advanced System . . . . . . . . . . . . . . . . . .35
2.1 Introduction . . . . . . . . . . . . . . . . . . . 35
2.2 RACH Procedure . . . . . . . . . . . . . . . . . . 36
2.2.1 RACH Procedure Signaling . . . . . . . . . . . . 36
2.2.2 UE behaviors . . . . . . . . . . . . . . . . . . 38
2.3 RAN Overload Control Method . . . . . . . . . . . .40
2.3.1 Push based Methods . . . . . . . . . . . . . . . 41
2.3.2 Pull based Methods . . . . . . . . . . . . . . . 42
2.3.3 System Parameter Tuning . . . . . . . . . . . . .43
2.3.4 CN (core network) Overload Resolution Mechanism .44
2.3.5 Discussion of Overload Control Mechanism . . . . 45
2.4 Simulation . . . . . . . . . . . . . . . . . . . . 45
2.4.1 Simulation assumptions and parameters . . . . . .45
2.4.2 Steps by Steps analysis . . . . . . . . . . . . .47
2.4.3 Overall analysis . . . . . . . . . . . . . . . . 50
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . 52
Phase II. Load Estimation Methods and Two Corresponding Resource Allocation Methods . . . . . . . . . . . . . .53
3 MAC-level Performance Analysis of 4-Step RACH Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . 57
3.2 System Model . . . . . . . . . . . . . . . . . . . 58
3.2.1 RACH Procedure Model . . . . . . . . . . . . . . 58
3.2.2 Traffic Model . . . . . . . . . . . . . . . . . .61
3.2.3 PDCCH constraint . . . . . . . . . . . . . . . . 63
3.3 Performance Analysis . . . . . . . . . . . . . . . 66
3.3.1 Capacity of RACH Preamble Transmission . . . . . 66
3.3.2 Expected Preamble Transmission Rate and RACH Success Probability . . . . . . . . . . . . . . . . . .67
3.3.3 Delay analysis . . . . . . . . . . . . . . . . . 72
3.4 Simulation Results . . . . . . . . . . . . . . . . 75
3.4.1 Evaluation for DL Resource Shortage . . . . . . .75
3.5 Summary . . . . . . . . . . . . . . . . . . . . . .77
3.6 Appendix: Derivation of P(U | m,R), E(S1 |{Ni}i=1~K,R), and P(S1 |{Ni}i=1~K,R) . . . . . . . . . 78
4 Estimation and Adaptation for Bursty LTE Random Access . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
4.1 Introduction . . . . . . . . . . . . . . . . . . . 83
4.2 Related Work . . . . . . . . . . . . . . . . . . . 84
4.3 Dynamic Backoff : A novel RACH contention resolution scheme . . . . . . . . . . . . . . . . . . . . . . . .86
4.3.1 Motivation and Illustration of the dynamic backoff scheme . . . . . . . . . . . . . . . . . . . . . . . .86
4.3.2 Protocol design . . . . . . . . . . . . . . . . .88
4.3.3 Parameter Determination . . . . . . . . . . . . .89
4.3.4 Estimation Error of the RACH access attempts . . 91
4.3.5 Performance Analysis . . . . . . . . . . . . . . 95
4.4 Simulation Results . . . . . . . . . . . . . . . . 96
4.4.1 Performance evaluation of the proposed dynamic backoff mechanism . . . . . . . . . . . . . . . . . . .97
4.5 Summary . . . . . . . . . . . . . . . . . . . . .102
5 Resource Allocation Method II: Consecutive Resource Allocation . . . . . . . . . . . . . . . . . . . . . 103
5.1 Introduction . . . . . . . . . . . . . . . . . . .103
5.2 System Model . . . . . . . . . . . . . . . . . . .104
5.3 Phase I: RACH attempts estimation . . . . . . . . 107
5.4 Phase II: Resource Allocation Approach . . . . . .109
5.4.1 RACH resource allocation . . . . . . . . . . . .109
5.4.2 Analytical Delay and Throughput . . . . . . . . 112
5.5 Simulation Result . . . . . . . . . . . . . . . . 113
5.6 Summary . . . . . . . . . . . . . . . . . . . . . 115
5.7 Appendix I: Derivation of P(U,E | M1,R′) . . . . .115
5.8 Appendix II: Resource Efficiency Optimization . . 118
5.9 Appendix II: Discussion on Resource Allocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Phase III. Game Theoretical Resource Allocation for Heterogeneous M2M Service Type . . . . . . . . . . . .125
6 Network Access for M2M/H2H Hybrid Systems: A Game Theoretic Approach . . . . . . . . . . . . . . . . . .127
6.1 Introduction . . . . . . . . . . . . . . . . . . .127
6.2 Game Model for RACH . . . . . . . . . . . . . . . 128
6.2.1 Fundamental Game Concepts . . . . . . . . . . . 128
6.2.2 RACH operation for network access . . . . . . . 128
6.2.3 Game Formulation . . . . . . . . . . . . . . . 129
6.3 System of Imperfect Information . . . . . . . . . 133
6.4 Simulation Results . . . . . . . . . . . . . . . .135
6.5 Discussion on Extensive Study . . . . . . . . . . 138
6.6 Summary . . . . . . . . . . . . . . . . . . . . . 139
7 Auction-Based Random Access Load Control for Time-Dependent Machine-to-Machine Communications . . . . . 141
7.1 Introduction . . . . . . . . . . . . . . . . . . .141
7.2 RACH Procedure . . . . . . . . . . . . . . . . . .144
7.2.1 Random Access Procedure . . . . . . . . . . . . 144
7.2.2 Random Access Modelling . . . . . . . . . . . . 144
7.2.3 RACH Transmission Rate . . . . . . . . . . . . .145
7.2.4 RACH attempt estimation . . . . . . . . . . . . 147
7.2.5 RACH attempt estimation error . . . . . . . . . 149
7.2.6 RACH resource scheduling . . . . . . . . . . . .151
7.3 Auction Model . . . . . . . . . . . . . . . . . . 157
7.3.1 Motivation . . . . . . . . . . . . . . . . . . .157
7.3.2 Auction Framework . . . . . . . . . . . . . . . 157
7.3.3 Population Distribution . . . . . . . . . . . . 159
7.3.4 Auction Design: Shared Resource Scheme . . . . .161
7.3.5 Auction Design: Dedicated Resource Scheme . . . 163
7.4 Evaluation Result . . . . . . . . . . . . . . . . 165
7.5 Conclusion . . . . . . . . . . . . . . . . . . . .169
8 Conclusion 171
Bibliography 177
dc.language.isoen
dc.subject接取zh_TW
dc.subject物聯網zh_TW
dc.subject隨機存取通道zh_TW
dc.subject機器對機器通訊zh_TW
dc.subject壅塞控制zh_TW
dc.subject估計zh_TW
dc.subject資源分配zh_TW
dc.subjectaccessen
dc.subjectresource allocationen
dc.subjectestimationen
dc.subjectload controlen
dc.subjectRACHen
dc.subjectIoTen
dc.subjectM2Men
dc.title長期演進系統中機器對機器通訊之壅塞控制、情境估計,與基於賽局理論的資源配置zh_TW
dc.titleLTE M2M Communications: Overload Control, Context Estimation, and Game-theoretical Resource Allocationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳和麟,黃經堯,廖婉君,王蒞君,洪樂文
dc.subject.keyword機器對機器通訊,物聯網,隨機存取通道,接取,壅塞控制,估計,資源分配,zh_TW
dc.subject.keywordM2M,IoT,RACH,access,load control,estimation,resource allocation,en
dc.relation.page188
dc.rights.note有償授權
dc.date.accepted2015-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved