Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53823
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖(Chi-Sheng Wu)
dc.contributor.authorBo-Ren Chenen
dc.contributor.author陳柏任zh_TW
dc.date.accessioned2021-06-16T02:30:37Z-
dc.date.available2017-08-06
dc.date.copyright2015-08-06
dc.date.issued2015
dc.date.submitted2015-07-30
dc.identifier.citation1. S. Das and W. M. A. Wan Daud, Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor. Renewable and Sustainable Energy Reviews, 39 (2014) 765-805.
2. I.-H. Tseng, W.-C. Chang and J. C. Wu, Photoreduction of CO 2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37 (2002) 37-48.
3. Slamet, H. W. Nasution, E. Purnama, S. Kosela and J. Gunlazuardi, Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications, 6 (2005) 313-319.
4. B. Srinivas, B. Shubhamangala, K. Lalitha, P. Anil Kumar Reddy, V. Durga Kumari, M. Subrahmanyam and B. R. De, Photocatalytic Reduction of CO2 over Cu‐TiO2/Molecular Sieve 5A Composite. Photochemistry and photobiology, 87 (2011) 995-1001.
5. J. Wei, X. Tan, T. Yu and L. Zhao, Photoconversion of CO 2 using copper-modified titanium dioxide nanoparticles. Collection of Czechoslovak Chemical Communications, 76 (2011) 1335-1346.
6. D. Liu, Y. Fernández, O. Ola, S. Mackintosh, M. Maroto-Valer, C. M. A. Parlett, A. F. Lee and J. C. S. Wu, On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications, 25 (2012) 78-82.
7. L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi and D. D. Dionysiou, Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review. International Journal of Hydrogen Energy, 39 (2014) 16812-16831.
8. H. Yoshida, Heterogeneous photocatalytic conversion of carbon dioxide, in Energy Efficiency and Renewable Energy Through Nanotechnology. 2011, Springer. 531-559.
9. C. J. Philippopoulos and M. D. Nikolaki, Photocatalytic Processes on the Oxidation of Organic Compounds in Water2010, p. 6-108.
10. S. W., Chemistry of the Solid-Water Interface. John Wiley & Sons, (1992)
11. M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy & Environmental Science, 2 (2009) 1231-1257.
12. B. P. Sullivan, K. Krist and H. Guard, Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, 2012, p.
13. A. Mills and S. Le Hunte, An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108 (1997) 1-35.
14. A. Fujishima, X. Zhang and D. A. Tryk, TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63 (2008) 515-582.
15. A. Beltrán, L. Gracia and J. Andrés, Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. The Journal of Physical Chemistry B, 110 (2006) 23417-23423.
16. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Light-induced amphiphilic surfaces. Nature, 388 (1997) 431-432.
17. S. Bagheri, K. Shameli and S. B. Abd Hamid, Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method. Journal of Chemistry, 2013 (2013) 5.
18. R. López, R. Gómez and M. E. Llanos, Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts. Catalysis Today, 148 (2009) 103-108.
19. X. Chen and S. S. Mao, Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107 (2007) 2891-2959.
20. C.-F. Lo and J. C. Wu, Preparation and characterization of TiO2-coated optical-fiber in a photo reactor. Journal of the Chinese Institute of Chemical Engineers, 36 (2005) 119-126.
21. H. K. Park, D. K. Kim and C. H. Kim, Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4. Journal of the American Ceramic Society, 80 (1997) 743-749.
22. H. Cheng, J. Ma, Z. Zhao and L. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chemistry of Materials, 7 (1995) 663-671.
23. M. Tan, G. Wang and L. Zhang, Thermal desorption in nanocrystalline TiO2. Journal of Applied Physics, 80 (1996) 1186-1189.
24. R. Inaba, T. Fukahori, M. Hamamoto and T. Ohno, Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase. Journal of Molecular Catalysis A: Chemical, 260 (2006) 247-254.
25. L. Matějová, K. Kočí, M. Reli, L. Čapek, V. Matějka, O. Šolcová and L. Obalová, On sol–gel derived Au-enriched TiO2 and TiO2-ZrO2 photocatalysts and their investigation in photocatalytic reduction of carbon dioxide. Applied Surface Science, 285, Part B (2013) 688-696.
26. F. Cot, A. Larbot, G. Nabias and L. Cot, Preparation and characterization of colloidal solution derived crystallized titania powder. Journal of the European Ceramic Society, 18 (1998) 2175-2181.
27. O. Harizanov and A. Harizanova, Development and investigation of sol–gel solutions for the formation of TiO2 coatings. Solar Energy Materials and Solar Cells, 63 (2000) 185-195.
28. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. Journal of Materials Science, 29 (1994) 1617-1622.
29. B. Yoldas, Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. Journal of Materials Science, 21 (1986) 1087-1092.
30. P. Usubharatana, D. McMartin, A. Veawab and P. Tontiwachwuthikul, Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & engineering chemistry research, 45 (2006) 2558-2568.
31. M. Abbott, J. Smith and H. Van Ness, Introduction to chemical engineering thermodynamics. McGraw-Hill, 2001, p.
32. R. Obert and B. C. Dave, Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. Journal of the American Chemical Society, 121 (1999) 12192-12193.
33. T. Abe, M. Tanizawa, K. Watanabe and A. Taguchi, CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy & Environmental Science, 2 (2009) 315-321.
34. T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki and O. Ishitani, Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS applied materials & interfaces, 3 (2011) 2594-2600.
35. R. Angamuthu, P. Byers, M. Lutz, A. L. Spek and E. Bouwman, Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex. Science, 327 (2010) 313-315.
36. W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile and A. Steinfeld, High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science, 330 (2010) 1797-1801.
37. N. Getoff, G. Scholes and J. Weiss, Reduction of carbon dioxide in aqueous solutions under the influence of radiation. Tetrahedron Letters, 1 (1960) 17-23.
38. B. Akermark, U. Eklund-Westlin, P. Baeckstrom and R. Lof, Photochemical, metal-promoted reduction of carbon dioxide and formaldehyde in aqueous solution. Acta Chem. Scand. B, 34 (1980) 27-30.
39. T. Inoue, A. Fujishima, S. Konishi and K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277 (1979) 637-638.
40. K. Adachi, K. Ohta and T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53 (1994) 187-190.
41. S. Kaneco, Y. Shimizu, K. Ohta and T. Mizuno, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 115 (1998) 223-226.
42. T. Mizuno, K. Adachi, K. Ohta and A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 98 (1996) 87-90.
43. A. Henglein, M. Gutiérrez and C. H. Fischer, Photochemistry of Colloidal Metal Sulfides 6. Kinetics of Interfacial Reactions at ZnS-Particles. Berichte der Bunsengesellschaft für physikalische Chemie, 88 (1984) 170-175.
44. H. Yoneyama, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catalysis Today, 39 (1997) 169-175.
45. K. Tennakone, Photoreduction of carbonic acid by mercury coated n-titanium dioxide. Solar Energy Materials, 10 (1984) 235-238.
46. S. Ichikawa, Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis. Energy Conversion and Management, 36 (1995) 613-616.
47. T.-f. Xie, D.-j. Wang, L.-j. Zhu, T.-j. Li and Y.-j. Xu, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2. Materials Chemistry and Physics, 70 (2001) 103-106.
48. G. Guan, T. Kida and A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Applied Catalysis B: Environmental, 41 (2003) 387-396.
49. N. Sasirekha, S. J. S. Basha and K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 62 (2006) 169-180.
50. Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang and M.-H. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catalysis Communications, 11 (2009) 210-213.
51. B.-J. Liu, T. Torimoto and H. Yoneyama, Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. Journal of Photochemistry and Photobiology A: Chemistry, 113 (1998) 93-97.
52. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, T. Okada and H. Kobayashi, Effect of Surface Structures on Photocatalytic CO2 Reduction Using Quantized CdS Nanocrystallites. The Journal of Physical Chemistry B, 101 (1997) 8270-8278.
53. P. Johne and H. Kisch, Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders. Journal of Photochemistry and Photobiology A: Chemistry, 111 (1997) 223-228.
54. J. C. Hemminger, R. Carr and G. A. Somorjai, The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane. Chemical Physics Letters, 57 (1978) 100-104.
55. A. Nishimura, N. Komatsu, G. Mitsui, M. Hirota and E. Hu, CO2 reforming into fuel using TiO2 photocatalyst and gas separation membrane. Catalysis Today, 148 (2009) 341-349.
56. K. Sekizawa, K. Maeda, K. Domen, K. Koike and O. Ishitani, Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. Journal of the American Chemical Society, 135 (2013) 4596-4599.
57. P.-Y. Liou, S.-C. Chen, J. C. S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer and R. Linforth, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy & Environmental Science, 4 (2011) 1487-1494.
58. J. Yuan, C. Zhang, C. Li, M. Chen and W. Shangguan. Pt-CdS/TiO2 nanotube catalyst for photocatalytic reduction of CO2 with water under visible light irradiation. in Proceedings of MRS Proceedings2011, or mrss11-1326-f03-06.
59. Q. Zhang, Y. Li, E. A. Ackerman, M. Gajdardziska-Josifovska and H. Li, Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Applied Catalysis A: General, 400 (2011) 195-202.
60. G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai and C. Wang, Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. Angewandte Chemie International Edition, 51 (2012) 2395-2399.
61. X. Li, H. Pan, W. Li and Z. Zhuang, Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Applied Catalysis A: General, 413–414 (2012) 103-108.
62. J. W. Lekse, M. K. Underwood, J. P. Lewis and C. Matranga, Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO2 and CuGa1–x Fe x O2 (x= 0.05, 0.10, 0.15, 0.20) Delafossites. The Journal of Physical Chemistry C, 116 (2012) 1865-1872.
63. M. Tahir and N. S. Amin, Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites. Applied Catalysis B: Environmental, 142–143 (2013) 512-522.
64. D. M. Bijith, J. Babu and K. G. Vinay, Photo-conversion of CO 2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology, 24 (2013) 405402.
65. A. Heciak, A. W. Morawski, B. Grzmil and S. Mozia, Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C-1-C-3 hydrocarbons and hydrogen. Applied Catalysis B-Environmental, 140 (2013) 108-114.
66. Wikipedia-photosynthesis.
67. W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang and J. C. Wu, A novel twin reactor for CO 2 photoreduction to mimic artificial photosynthesis. Applied Catalysis B: Environmental, 132 (2013) 445-451.
68. Defining standard spectra for solar panels.
69. W. Xuewen, Z. Zhiyong and Z. Shuixian, Preparation of nano-crystalline SrTiO3 powder in sol-gel process. Materials Science and Engineering: B, 86 (2001) 29-33.
70. A. Goswami, A. Acharya and A. K. Pandey, Study of Self-Diffusion of Monovalent and Divalent Cations in Nafion-117 Ion-Exchange Membrane. The Journal of Physical Chemistry B, 105 (2001) 9196-9201.
71. K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský and O. Šolcová, Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89 (2009) 494-502.
72. C. N. Satterfield, Heterogeneous catalysis in industrial practice. (1991)
73. W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction. Wiley New York, 2007, p.
74. X-ray diffraction -- Bruker D8 Discover.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53823-
dc.description.abstract目前二氧化碳光催還原之研究中,效率並不高且再現性不佳。本研究利用添加氫氣於反應器中,可得較高產率,且提升反應結果的穩定性。並探討不同重量及價態的銅負載觸媒對二氧化碳還原效率的影響。
利用溶膠凝膠法製備二氧化鈦,並使用初濕含浸法將銅負載於其上,利用不同氣體環境鍛燒使其擁有不同價態:由氧氣鍛燒成CuO而由氫氣還原成Cu。並以UV-Vis、SEM、EDS、XRD、XPS等檢測方法,鑑定觸媒對光的吸收、表面狀況、晶相等性質,另外也偵測到反應前後銅的價態有變化,由氧化態向還原態偏移。並使用254nm的UV燈進行氣相反應,其光強度約為12mW/cm2,並提高溫度至約90oC,在0.01atm分壓的氫氣中照射TiO2、1%CuO/TiO2、2%CuO/TiO2、1%Cu/TiO2及2%Cu/TiO2。結果顯示在此實驗條件中還原價態銅具有較高活性,1%Cu/TiO2及2%Cu/TiO2之產量並沒有太大分別。最高產量分別可達28.72μmol/g甲烷和5.74μmol/g一氧化碳,及26.13μmol/g甲烷和7.23μmol/g一氧化碳。
因此利用1%Cu/TiO2放入雙胞反應器中,使用Fe2+/Fe3+為電子傳遞媒介,在AM1.5G模擬太陽光氙燈照射,並利用預處理過的Nafion薄膜分隔兩邊半反應器,分別為產氧端及還原端。在產氧端中放入Pt/WO3;在還原端水溶液中則放入產氫觸媒Pt/SrTiO3:Rh,利用其產生的氫氣做為二氧化碳之氫源。還原端最高產量分別為1.6556μmol/g氫氣、0.2005μmol/g甲烷及1.3008μmol/g一氧化碳。
zh_TW
dc.description.abstractCurrently in the carbon dioxide photocatalytic reduction, the efficiency is not high and is not always reproducible. In this thesis, we got high amount of products and increased the stability by adding hydrogen into the photoreactor. We studied the effects of the weight loadings and the valance states of copper on the efficiency of carbon dioxide reduction.
Sol-gel method was used to synthesize titanium dioxide. Copper was loaded on titanium dioxide by incipient-wetness impregnation method. The variations of copper valence state were obtained under different calcination atmospheres. CuO was formed under air calcination while Cu was formed under H2 reduction. Several instruments, UV-Vis, SEM, EDS, XRD and XPS were applied to measure the light absorption, surface morphology, crystalline phase and chemical status. The valence change of copper was found from the oxidation to reduction states before and after the reaction. In the vapor-phase photoreaction, an UVC lamp was used as the light source 254 nm and the light intensity 12 mW/cm2. The temperature was raised up to 90oC. The reaction were carried out by using TiO2, 1%CuO/TiO2, 2%CuO/TiO2, 1%Cu/TiO2 and 2%Cu/TiO2 under 0.01 atm hydrogen. The results revealed that the reduced copper had higher activity for the CO2 reduction under these conditions. There was not much difference in yields between 1%Cu/TiO2 and 2%Cu/TiO2. For these two catalysts, the highest yields were 28.72μmol/g methane, 5.74μmol/g CO and 26.13μmol/g methane, 7.23μmol/g CO, respectively, in 8 hours.
Thus, the 1%Cu/TiO2 was used in the twin reactor with Fe2+/Fe3+ as electron mediator. We used artificial sunlight, AM1.5G Xenon lamp, to irradiate the catalysts. Pre-treated Nation cation-exchanged membrane was used for separating two different solutions that were called oxygen side and reduction side. Pt/WO3 was put into the oxygen side solution. In the reduction side, hydrogen catalyst Pt/SrTiO3:Rh, was put into the solution. The hydrogen generated by the catalyst can be used as the hydrogen source of carbon dioxide reduction. 1%Cu/TiO2 was put on the quartz plate in the reduction side to contact with the carbon dioxide in the gas phase. The highest yields in reduction side are 0.5863μmol/g hydrogen, 0.2005μmol/g methane and 1.3008μmol/g CO.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:30:37Z (GMT). No. of bitstreams: 1
ntu-104-R02524017-1.pdf: 5067796 bytes, checksum: 80780c3d9da523bebcb353ae24c52905 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
摘要 2
ABSTRACT 3
CONTENTS 5
LIST OF FIGURES 8
LIST OF TABLES 11
Chapter 1 緒論 12
Chapter 2 文獻回顧 14
2.1 光觸媒簡介 14
2.2 光觸媒反應原理 14
2.3 二氧化鈦簡介 18
2.3.1 結構與性質 18
2.3.2 觸媒改質 23
2.4 觸媒製備方法 24
2.4.1 熱水解法 25
2.4.2 水熱法 25
2.4.3 微胞法及逆微胞法 25
2.4.4 溶膠凝膠法 25
2.5 二氧化碳 27
2.5.1 簡介 27
2.5.2 固定二氧化碳 28
2.5.3 還原二氧化碳 28
2.5.4 銅負載二氧化鈦 40
2.5.5 光合作用 44
2.6 太陽光譜介紹 46
Chapter 3 實驗方法 48
3.1 實驗藥品與儀器設備 48
3.1.1 藥品 48
3.1.2 儀器 49
3.2 觸媒製備 49
3.2.1 溶膠凝膠法(Sol-gel Method) 49
3.2.2 初濕含浸法(Incipient Wetness Method) 51
3.2.3 光沉積法(Photo Deposition Method) 51
3.3 陽離子交換膜前處理 52
3.4 觸媒特性分析原理與反應分析原理 54
3.4.1 儀器型號與規格 54
3.4.2 紫外光可見光光譜儀(UV-Visible Spectrometer, UV-Vis) 54
3.4.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 56
3.4.4 能量散佈光譜儀(Energy Dispersive Spectrometer, EDS) 57
3.4.5 比表面積分析(Specific Surface Area Analyzer, BET) 58
3.4.6 X光光電子光譜儀(X-ray Photoelectron Spectroscopy, XPS) 59
3.4.7 X光繞射儀(X-Ray Diffractometer, XRD) 60
3.4.8 氣相管柱層析儀(Gas Chromatography, GC) 63
3.4.9 SISC色層分析處理系統 65
3.5 光催化活性檢測 67
3.5.1 光催氫化氣相反應器(Gas phase reactor) 67
3.5.2 雙胞膜反應器系統 (Twin Reactor system) 69
3.6 反應產量檢測 75
3.6.1 氫氣檢量線製作 75
3.6.2 甲烷檢量線製作 77
3.6.3 一氧化碳檢量線製作 79
Chapter 4 觸媒特性分析結果與討論 81
4.1 銅負載二氧化鈦製備 81
4.2 觸媒檢測與表面分析 81
4.2.1 UV-Vis吸收光譜 81
4.2.2 XRD繞射分析 84
4.2.3 FE-SEM場發射掃描式電子顯微鏡 85
4.2.4 EDS能量分散光譜 89
4.2.5 XPS表面元素價態分析 97
4.2.6 BET比表面積測定 98
Chapter 5 光觸媒反應結果與討論 99
5.1 60oC未加氫氣光催化二氧化碳 99
5.2 90oC光催化二氧化碳 100
5.2.1 氫氣的效應 101
5.2.2 Cu還原效應 103
5.2.3 CuO負載量效應 105
5.2.4 Cu負載量效應 106
5.3 雙反應器 107
5.4 產率和量子效率 112
Chapter 6 結論 114
REFERENCES 116
附錄 121
個人小傳 125
dc.language.isozh-TW
dc.title銅負載二氧化鈦在雙胞反應器進行光催化還原二氧化碳zh_TW
dc.titlePhotocatalytic CO2 Reduction by Cu loaded TiO2 in the Twin Photoreactoren
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑閔(Sue-Min Chang),康敦彥(Dun-Yen Kang)
dc.subject.keyword光催化還原,二氧化碳,Cu/TiO2,雙胞反應器,zh_TW
dc.subject.keywordphotocatalytic reduction,carbon dioxide,Cu/TiO2,twin reactor,en
dc.relation.page125
dc.rights.note有償授權
dc.date.accepted2015-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved