Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53817
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳顥齡(Hao-Ling Chen)
dc.contributor.authorTing-Chia Hsuen
dc.contributor.author許庭嘉zh_TW
dc.date.accessioned2021-06-16T02:30:27Z-
dc.date.available2020-08-26
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-04
dc.identifier.citationArnould, C., Penta, M., Renders, A., Thonnard, J.-L. (2004). ABILHAND-Kids: a measure of manual ability in children with cerebral palsy. Neurology, 63(6), 1045-1052. doi:10.1212/01.wnl.0000138423.77640.37
Bax, M., Goldstein, M., Rosenbaum, P., Leviton, A., Paneth, N., Dan, B., . . . Damiano, D. (2005). Proposed definition and classification of cerebral palsy, April 2005. Developmental medicine and child neurology, 47(8), 571-576.
Carr, J., Sheperd, R. (2003). Guidelines for Exercise and Training to Optimize Motor Skill. In. Rehabilitation, Stroke: Butterworth-Heinemann.
Cauraugh, J. H., Summers, J. J. (2005). Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Progress in Neurobiology, 75(5), 309-320. doi:10.1016/j.pneurobio.2005.04.001
Chang, M. J., Ma, H. I., Lu, T. H. (2015). Estimating the prevalence of cerebral palsy in Taiwan: A comparison of different case definitions. Research in Developmental Disabilities, 36C, 207-212. doi:10.1016/j.ridd.2014.10.001
Charles, J., Gordon, A. M. (2006). Development of hand-arm bimanual intensive training (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy. Developmental Medicine Child Neurology, 48(11), 931-936. doi:10.1017/S0012162206002039
Chen, Chen, C. L., Kang, L. J., Wu, C. Y., Chen, F. C., Hong, W. H. (2014). Improvement of upper extremity motor control and function after home-based constraint induced therapy in children with unilateral cerebral palsy: immediate and long-term effects. American Journal of Physical Medicine Rehabilitation, 95(8), 1423-1432. doi:10.1016/j.apmr.2014.03.025
Chen, Chen, H.-L., Shieh, J.-Y., Wang, T.-N. (2019). Preliminary Efficacy of a Friendly Constraint-Induced Therapy (Friendly-CIT) Program on Motor and Psychosocial Outcomes in Children with Cerebral Palsy. Physical Occupational Therapy in Pediatrics, 39(2), 139-150. doi:10.1080/01942638.2018.1484407
Chen, Fanchiang, H. D., Howard, A. (2017). Effectiveness of virtual reality in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Physical Therapy, 98(1), 63-77. doi:10.1093/ptj/pzx107
Cohen, J. (2013). Statistical power analysis for the behavioral sciences: Academic press.
de Jong, L. D., van Meeteren, A., Emmelot, C. H., Land, N. E., Dijkstra, P. U. (2018). Reliability and sources of variation of the ABILHAND-Kids questionnaire in children with cerebral palsy. Disability and Rehabilitation, 40(6), 684-689. doi:10.1080/09638288.2016.1272139
de Mello Monteiro, C. B., Massetti, T., da Silva, T. D., van der Kamp, J., de Abreu, L. C., Leone, C., Savelsbergh, G. J. (2014). Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Research in Developmental Disabilities, 35(10), 2430-2437. doi:10.1016/j.ridd.2014.06.006
Deluca, S. C., Echols, K., Law, C. R., Ramey, S. L. (2006). Intensive pediatric constraint-induced therapy for children with cerebral palsy: randomized, controlled, crossover trial. Journal of Child Neurology, 21(11), 931-938. doi:10.1177/08830738060210110401
Eyre, J. (2003). Development and plasticity of the corticospinal system in man. Neural Plasticity, 10(1-2), 93-106. doi:10.1155/NP.2003.93
Facchin, P., Rosa-Rizzotto, M., Visona Dalla Pozza, L., Turconi, A. C., Pagliano, E., Signorini, S., . . . Group, G. S. (2011). Multisite trial comparing the efficacy of constraint-induced movement therapy with that of bimanual intensive training in children with hemiplegic cerebral palsy: postintervention results. American Journal of Physical Medicine Rehabilitation, 90(7), 539-553. doi:10.1097/PHM.0b013e3182247076
Friel, K. M., Kuo, H.-C., Carmel, J. B., Rowny, S. B., Gordon, A. M. (2014). Improvements in hand function after intensive bimanual training are not associated with corticospinal tract dysgenesis in children with unilateral cerebral palsy. Experimental Brain Research, 232(6), 2001-2009. doi:10.1007/s00221-014-3889-x
Gaillard, F., Cretual, A., Cordillet, S., Le Cornec, C., Gonthier, C., Bouvier, B., . . . Rauscent, H. (2018). Kinematic motion abnormalities and bimanual performance in children with unilateral cerebral palsy. Developmental Medicine Child Neurology, 60(8), 839-845. doi:10.1111/dmcn.13774
Gordon, A. M. (2016). Impaired Voluntary Movement Control and Its Rehabilitation in Cerebral Palsy. Advances in Experimental Medicine and Biology, 957, 291-311. doi:10.1007/978-3-319-47313-0_16
Gordon, A. M., Charles, J., Wolf, S. L. (2005). Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function. Archives of Physical Medicine and Rehabilitation, 86(4), 837-844. doi:10.1016/j.apmr.2004.10.008
Gordon, A. M., Duff, S. V. (1999). Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Developmental Medicine Child Neurology, 41(9), 586-591. doi:10.1017/S0012162299001231
Gordon, A. M., Hung, Y. C., Brandao, M., Ferre, C. L., Kuo, H. C., Friel, K., . . . Charles, J. R. (2011). Bimanual training and constraint-induced movement therapy in children with hemiplegic cerebral palsy: a randomized trial. Neurorehabilitation and Neural Repair, 25(8), 692-702. doi:10.1177/1545968311402508
Gordon, A. M., Okita, S. Y. (2010). Augmenting pediatric constraint-induced movement therapy and bimanual training with video gaming technology. Technology and Disability, 22(4), 179-191. doi:10.3233/TAD-2010-0302
Gordon, A. M., Schneider, J. A., Chinnan, A., Charles, J. R. (2007). Efficacy of a hand–arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial. Developmental Medicine Child Neurology, 49(11), 830-838. doi:10.1111/j.1469-8749.2007.00830.x
Green, D., Schertz, M., Gordon, A. M., Moore, A., Schejter Margalit, T., Farquharson, Y., . . . Fattal-Valevski, A. (2013). A multi-site study of functional outcomes following a themed approach to hand-arm bimanual intensive therapy for children with hemiplegia. Developmental Medicine Child Neurology, 55(6), 527-533. doi:10.1111/dmcn.12113
Green, D., Wilson, P. H. (2011). Validation of the Elements/RE-ACTION System for use with children: evaluation of performance across developmental stages. Paper presented at the 2011 International Conference on Virtual Rehabilitation.
Himmelmann, K., Hagberg, G., Beckung, E., Hagberg, B., Uvebrant, P. (2005). The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth‐year period 1995–1998. Acta paediatrica, 94(3), 287-294. doi:10.1111/j.1651-2227.2005.tb03071.x
Hoare, B. J., Wasiak, J., Imms, C., Carey, L. (2007). Constraint‐induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy. Cochrane Database of Systematic Reviews(2). doi:10.1002/14651858.CD004149.pub2
Hoshi, K., Waterworth, J. (2009). Tangible presence in blended reality space. Paper presented at the Presence.
Houwink, A., Aarts, P. B., Geurts, A. C., Steenbergen, B. (2011). A neurocognitive perspective on developmental disregard in children with hemiplegic cerebral palsy. Research in Developmental Disabilities, 32(6), 2157-2163. doi:10.1016/j.ridd.2011.07.012
Houwink, A., Geerdink, Y. A., Steenbergen, B., Geurts, A. C., Aarts, P. B. (2013). Assessment of upper‐limb capacity, performance, and developmental disregard in children with cerebral palsy: validity and reliability of the revised Video‐Observation Aarts and Aarts module: Determine Developmental Disregard (VOAA‐DDD‐R). Developmental Medicine Child Neurology, 55(1), 76-82. doi:10.1111/j.1469-8749.2012.04442.x
Hsiao, L.-C. (2019). 腦性麻痺孩童雙側上肢體感動作訓練系統之發展: 可行性評估. 臺灣大學職能治療研究所學位論文, 1-71. doi:10.6342/NTU201900112
Hung, Y. C., Casertano, L., Hillman, A., Gordon, A. M. (2011). The effect of intensive bimanual training on coordination of the hands in children with congenital hemiplegia. Research in Developmental Disabilities, 32(6), 2724-2731. doi:10.1016/j.ridd.2011.05.038
Hung, Y. C., Ferre, C. L., Gordon, A. M. (2018). Improvements in Kinematic Performance After Home-Based Bimanual Intensive Training for Children with Unilateral Cerebral Palsy. Physical Occupational Therapy in Pediatrics, 38(4), 370-381. doi:10.1080/01942638.2017.1337663
Jansen, L. M., Ketelaar, M., Vermeer, A. (2003). Parental experience of participation in physical therapy for children with physical disabilities. Developmental Medicine Child Neurology, 45(1), 58-69.
Jaspers, E., Desloovere, K., Bruyninckx, H., Klingels, K., Molenaers, G., Aertbeliën, E., . . . Feys, H. (2011). Three-dimensional upper limb movement characteristics in children with hemiplegic cerebral palsy and typically developing children. Research in Developmental Disabilities, 32(6), 2283-2294. doi:10.1016/j.ridd.2011.07.038
Kantak, S. S., Zahedi, N., McGrath, R. L. (2016). Task-dependent bimanual coordination after stroke: relationship with sensorimotor impairments. Archives of Physical Medicine and Rehabilitation, 97(5), 798-806. doi:10.1016/j.apmr.2016.01.020
Kleim, J. A., Hogg, T. M., VandenBerg, P. M., Cooper, N. R., Bruneau, R., Remple, M. (2004). Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. Journal of Neuroscience, 24(3), 628-633. doi:10.1523/JNEUROSCI.3440-03.2004
Lederman, S. J., Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception, Psychophysics, 71(7), 1439-1459. doi:doi:10.3758/APP.71.7.1439
Levac, D., Rivard, L., Missiuna, C. (2012). Defining the active ingredients of interactive computer play interventions for children with neuromotor impairments: a scoping review. Research in Developmental Disabilities, 33(1), 214-223. doi:10.1016/j.ridd.2011.09.007
Liu, K.-C., Chen, H.-L., Wang, T.-N., Shieh, J.-Y. (2016). Developing the observatory test of capacity, performance, and developmental disregard (OTCPDD) for children with cerebral palsy. PloS one, 11(3), e0151798. doi:10.1371/journal.pone.0151798
Ni, L. T., Fehlings, D., Biddiss, E. (2014). Design and evaluation of virtual reality–based therapy games with dual focus on therapeutic relevance and user experience for children with cerebral palsy. GAMES FOR HEALTH: Research, Development, and Clinical Applications, 3(3), 162-171. doi:10.1089/g4h.2014.0003
Nudo, R. (2003). Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. Journal of Rehabilitation Medicine-Supplements, 41(41 Suppl), 7-10. doi:10.1080/16501960310010070
Parsons, T. D., Rizzo, A. A., Rogers, S., York, P. (2009). Virtual reality in paediatric rehabilitation: a review. Developmental Neurorehabilitation, 12(4), 224-238. doi:10.1080/17518420902991719
Pavão, S. L., Arnoni, J. L. B., Oliveira, A. K. C. d., Rocha, N. A. C. F. (2014). Impact of a virtual reality-based intervention on motor performance and balance of a child with cerebral palsy: a case study. Revista Paulista de Pediatria, 32(4), 389-394. doi:10.1016/j.rpped.2014.04.005
Ravi, D. K., Kumar, N., Singhi, P. (2017). Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy, 103(3), 245-258. doi:10.1016/j.physio.2016.08.004
Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., Bax, M., Damiano, D., . . . Jacobsson, B. (2007). A report: the definition and classification of cerebral palsy April 2006. Developmental Medicine Child Neurology. Supplement, 109, 8-14.
Sakzewski, L., Ziviani, J., Abbott, D. F., Macdonell, R. A., Jackson, G. D., Boyd, R. N. (2011). Randomized trial of constraint-induced movement therapy and bimanual training on activity outcomes for children with congenital hemiplegia. Developmental Medicine Child Neurology, 53(4), 313-320. doi:10.1111/j.1469-8749.2010.03859.x
Schmidt, R. A., Lee, T. D., Winstein, C., Wulf, G., Zelaznik, H. N. (2018). Motor control and learning: A behavioral emphasis: Human kinetics.
Schnackers, M., Beckers, L., Janssen-Potten, Y., Aarts, P., Rameckers, E., van der Burg, J., . . . Steenbergen, B. (2018). Home-based bimanual training based on motor learning principles in children with unilateral cerebral palsy and their parents (the COAD-study): rationale and protocols. BMC pediatrics, 18(1), 139. doi:ARTN 139
10.1186/s12887-018-1110-2
Sköld, A., Josephsson, S., Eliasson, A.-C. (2004). Performing bimanual activities: the experiences of young persons with hemiplegic cerebral palsy. American Journal of Occupational Therapy, 58(4), 416-425. doi:10.5014/ajot.58.4.416
Snider, L., Majnemer, A. (2010). Virtual reality: we are virtually there. In: Taylor Francis.
Staudt, M. (2010). Brain plasticity following early life brain injury: insights from neuroimaging. Paper presented at the Seminars in Perinatology.
Stinear, J. W., Byblow, W. D. (2004). Rhythmic bilateral movement training modulates corticomotor excitability and enhances upper limb motricity poststroke: a pilot study. Journal of Clinical Neurophysiology, 21(2), 124-131. doi:10.1097/00004691-200403000-00008
Taub, E., Ramey, S. L., DeLuca, S., Echols, K. (2004). Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics, 113(2), 305-312. doi:10.1542/peds.113.2.305
Taub, E., Uswatte, G., Elbert, T. (2002). New treatments in neurorehabiliation founded on basic research. Nature Reviews Neuroscience, 3(3), 228. doi:10.1038/nrn754
Taub, E., Uswatte, G., Morris, D. M. (2003). Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Physical Medicine and Rehabilitation Clinics of North America, 14(1 Suppl), S77-91, ix. doi:10.1016/s1047-9651(02)00052-9
Uswatte, G., Taub, E., Griffin, A., Vogtle, L., Rowe, J., Barman, J. (2012). The pediatric motor activity log-revised: assessing real-world arm use in children with cerebral palsy. Rehabilitation Psychology, 57(2), 149. doi:10.1037/a0028516
Utley, A., Steenbergen, B. (2006). Discrete bimanual co-ordination in children and young adolescents with hemiparetic cerebral palsy: recent findings, implications and future research directions. Pediatric Rehabilitation, 9(2), 127-136. doi:10.1080/13638490500155573
Utley, A., Steenbergen, B., Sugden, D. (2004). The influence of object size on discrete bimanual co-ordination in children with hemiplegic cerebral palsy. Disability and Rehabilitation, 26(10), 603-613. doi:10.1080/09638280410001696674
Wallen, M., Ziviani, J., Herbert, R., Evans, R., Novak, I. (2008). Modified constraint-induced therapy for children with hemiplegic cerebral palsy: a feasibility study. Developmental Neurorehabilitation, 11(2), 124-133. doi:10.1080/17518420701640897
Wang, Z., Giannopoulos, E., Slater, M., Peer, A., Buss, M. (2011). Handshake: Realistic human-robot interaction in haptic enhanced virtual reality. Presence: Teleoperators and Virtual Environments, 20(4), 371-392. doi:10.1162/PRES_a_00061
Weiss, P. L., Kizony, R., Feintuch, U., Katz, N. (2006). Virtual reality in neurorehabilitation. Textbook of neural repair and rehabilitation, 51(8), 182-197.
Weiss, P. L., Rand, D., Katz, N., Kizony, R. (2004). Video capture virtual reality as a flexible and effective rehabilitation tool. Journal of Neuroengineering and Rehabilitation, 1(1), 12. doi:10.1186/1743-0003-1-12
Weiss, P. L., Tirosh, E., Fehlings, D. (2014). Role of virtual reality for cerebral palsy management. Journal of Child Neurology, 29(8), 1119-1124. doi:10.1177/0883073814533007
Willenborg, M. J., Shilt, J. S., Smith, B. P., Estrada, R. L., Castle, J. A., Koman, L. A. (2002). Technique for iliopsoas ultrasound-guided active electromyography-directed botulinum A toxin injection in cerebral palsy. Journal of Pediatric Orthopaedics, 22(2), 165-168.
Winstein, C. J., Miller, J. P., Blanton, S., Taub, E., Uswatte, G., Morris, D., . . . Wolf, S. (2003). Methods for a multisite randomized trial to investigate the effect of constraint-induced movement therapy in improving upper extremity function among adults recovering from a cerebrovascular stroke. Neurorehabilitation and Neural Repair, 17(3), 137-152. doi:10.1177/0888439003255511
Witmer, B. G., Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225-240. doi:10.1162/105474698565686
Zielinski, I. M., Jongsma, M. L., Baas, C. M., Aarts, P. B., Steenbergen, B. (2014). Unravelling developmental disregard in children with unilateral cerebral palsy by measuring event-related potentials during a simple and complex task. BMC neurology, 14(1), 6. doi:10.1186/1471-2377-14-6
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53817-
dc.description.abstract前言: 單側偏癱腦性麻痺是常見的生理疾患,其上肢的功能損傷通常較下肢來的嚴重。除了動作能力不足外,亦觀察到其發展性漠視的表現。在上肢動作缺損當中,由於大多數日常生活活動需雙手操作,導致雙手協調問題影響生活獨立性甚鉅。雙側上肢密集訓練不只對於偏癱腦麻孩童的患側上肢功能有助益,更能改善雙手協調以及促進日常生活目標的達成。另一方面,虛擬實境屬於一種新興的療法,可提升治療動機和予以動作上的密集練習。然而,當實務應用於孩童身上,不論是雙側上肢密集訓練或是虛擬實境皆存在部分限制。有鑑於此,本研究團隊結合雙側上肢密集訓練和虛擬實境各自的優勢,研發出雙側上肢體感動作訓練方案。本研究目的藉由對照由治療師活動帶領形式的雙側上肢動作訓練,以驗證雙側上肢體感動作訓練方案於上肢動作控制策略、日常表現的動作功能、活動參與度上的療效。
方法: 本研究屬單盲的隨機控制試驗。招募20位5至12歲的單側偏癱腦性麻痺孩童(平均年齡: 8.05 ± 1.73歲)。受試者被分配至兩組雙側上肢動作訓練方案,體感遊戲形式或是治療師形式,各有10位孩童。體感遊戲形式包含對稱雙手遊戲的「烘焙大師」以及不對稱雙手遊戲的「冰果大師」。為了檢驗成效,本篇將雙側上肢體感動作方案當中的輸出資料納入成效考量。其他比較兩組的成效指標包含如下: (1)動作控制策略,透過執行伸手及物任務量測; (2)動作功能成效指標包含修訂版兒童動作活動量表(Pediatric Motor Activity Log-Revised, PMAL-R)、兒童雙側手功能量表(ABILHAND-Kids); (3)活動參與度方面則有活動參與度問卷(Engagement Questionnaires, EQs)作為衡量依據。本研究使用共變異數分析做為檢驗兩組的組間治療差異,而配對T檢定則用於測量兩組分別於治療前後的組內差異。
結果: 本研究招募之學齡孩童,兩組的基本人口學和臨床變項無顯著差異(p < 0.05)。8週介入後,兩組在單側和雙側上肢動作控制策略皆有正向的變化,如: 患側手的動作品質進步(體感遊戲形式: p = 0.032, d = -0.80; 治療師形式: p = 0.004, d = -1.22)。然而在其他面向兩組仍存有不同的助益,體感遊戲形式方案具有較佳的患側手動作準備效率(即: 反應時間較短: p = 0.108, η2 = 0.15); 另一方面,治療師形式方案在患側手的動作效率和力量控制則有較多的進步(即: 動作時間較短, p = 0.158, η2 = 0.11; 尖峰速度較大, p = 0.208, η2 = 0.09)。至於雙側協調,治療師形式方案有較好表現,包含: 雙手動作重疊時間較多(p = 0.214, η2 = 0.09)和雙手結束動作時間差較少(p = 0.124, η2 = 0.13)。儘管如此,兩組在日常生活的動作功能上具有相當的進步幅度,不論是患側手的使用頻率(p = 0.37, η2 = 0.05)或動作品質 (p = 0.96, η2 < 0.01),且雙手執行難度有降低(p = 0.83, η2 < 0.01)。此外,從烘焙大師和冰果大師的輸出資料分析中可看出體感遊戲組的孩童在動作表現有所增進(8週內的遊戲成功率提升和平均動作時間降低)。最後,除了動作指標,活動參與度問卷則呈現出兩組的單側偏癱腦性麻痺孩童在介入期間皆維持高度的活動動機。
結論: 雙側上肢體感動作訓練方案是兼具娛樂性與雙側上肢密集訓練原則的介入途徑。在提升患側手動作控制策略和日常生活的動作功能上,具有與治療師形式的雙側上肢密集訓練相當的成效。然而在雙側協調促進的方面,可嘗試將實體媒材融入虛擬實境中,以達到更佳的療效。整體而言,雙側上肢體感動作訓練是可行且有效的方案,可進一步應用於臨床或是居家環境當中。
zh_TW
dc.description.abstractIntroduction: Unilateral cerebral palsy (UCP) is a common pediatric disorder with the affected upper extremity (UE) being more influenced than the lower extremity. Furthermore, the phenomenon of developmental disregard is also being observed. However, among UE motor impairments, problems of bimanual coordination may much impact independence performance in daily life for many activities are bimanual. Bimanual intensive training (BIT) has shown efficacy in improving not only the unilateral hand function of children with UCP but also bimanual coordination and goal attainment. On the other hand, virtual reality (VR) is a novel approach, acknowledged as being beneficial to motivation enhancement and intensive practice. However, both BIT and VR have some difficulties when applying to children with UCP; hence, our research team proposed a program called Kinect-based BIT combining the strengths of BIT and VR. This study aimed to examine the effectiveness of the Kinect-based BIT program, by comparing it with the therapist-based BIT program on UE motor, ADLs performance, and engagement.
Methods: This study was a single-blinded and randomized controlled trial. A total of 20 school-aged UCP, aged 5 to 12, were recruited and had completed the BIT programs (mean age: 8.05 ± 1.73 years). Eligible participants received a 36-hour BIT program, either Kinect-based or therapist-based, 10 individuals in each group. The Kinect-based program comprises symmetrical and asymmetrical bimanual games, designed as “Master Baker” and “Master I-Vendor” respectively. To examine the effectiveness, the output data extracted from the Kinect-system is one of the outcome measures of Kinect-based BIT. Besides, other outcome measures which make comparisons between both groups are as follows: (1) motor control strategies, measured by a reach-to-grasp task (RTG); (2) motor function outcomes consist of Pediatric Motor Activity Log-Revised (PMAL-R) and ABILHAND-Kids; (3) Engagement Questionnaires (EQs) is included as engagement outcomes. The ANCOVA will be utilized to perform the between-group analysis, and a paired t-test will be conducted to investigate the within-group changes, pre- and post-test.
Results: In each group, the individuals were matched for demographic and clinical characteristics (p < 0.05). After 8-week interventions, both groups demonstrated positive changes in the unilateral and bilateral UE motor control strategies, such as greater movement smoothness of the affected hand during forward-reaching (Kinect-based BIT: p = 0.032, d = -0.80; therapist-based BIT: p = 0.004, d = -1.22). But slightly different benefits also could be seen, that Kinect-based BIT showed better movement preparation efficiency of the affected hand (i.e., less reaction time, p = 0.108, η2 = 0.15); on the contrary, therapist-based BIT gained more improvements on movement efficiency and force control of the affected hand (i.e., less movement time, p = 0.158, η2 = 0.11; higher peak velocity, p = 0.208, η2 = 0.09). Moreover, the results of the bimanual kinematics revealed that therapist-based BIT had better bimanual coordination performance than Kinect-based BIT, such as normalized overlapped-movement time of two hands (p = 0.214, η2 = 0.09), and normalized goal synchronization (p = 0.124, η2 = 0.13). However, two groups had comparable effects on motor functions of the affected hand in daily livings, either on higher amount of use (p = 0.37, η2 = 0.05) or enhanced quality of movements (p = 0.96, η2 < 0.01) assessed by PMAL-R. Furthermore, fewer difficulties while executing bimanual tasks also assessed by ABILHAND-Kids (p = 0.83, η2 < 0.01). Referring to the data recorded from the Master baker and Master I-Vender, higher success rates and less average movement time in 8 weeks were also evidence for the enhanced motor performance of the children in the Kinect-based BIT group. Lastly, except for the motor outcomes, EQs documented that two groups of the children with UCP maintained great and similar motivation responses during the intervention.
Conclusion: Kinect-based BIT is an entertaining and BIT-specific intervention, which had comparable treatment effects with therapist-based BIT on aspects of motor control strategies of the affected hand, and enhanced motor function can be observed in daily activities. However, facilitation of the bimanual coordination might be further improved by integrating physical materials into a virtual context. In conclusion, Kinect-based BIT would be a feasible and effective program to apply in clinical settings or home-based environments.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:30:27Z (GMT). No. of bitstreams: 1
U0001-0408202015485300.pdf: 3186917 bytes, checksum: 5024647d6032dd39a36bb27f4a7ef8e7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iv
Abstract vi
Table of Contents viii
List of Figures xi
List of Tables xii
Chapter 1. Introduction 1
1.1 Unilateral Cerebral Palsy (UCP) 1
1.1.1 Definition and Prevalence 1
1.1.2 Upper extremity motor impairments 1
1.1.3 Developmental disregard 3
1.2 Bimanual intensive training (BIT) 4
1.2.1 Background of BIT 4
1.2.2 Principles of BIT 6
1.2.3 Effectiveness of BIT 8
1.2.4 Difficulties of implementing BIT in children with UCP 9
1.3 Virtual Reality (VR) 9
1.3.1 VR for rehabilitation in children with UCP 9
1.3.2 Advantages of VR 10
1.3.3 Weakness of VR 11
1.4 Knowledge Gaps 12
1.5 A Potential Solution: Kinect-based BIT 12
1.6 Research Purpose and Hypothesis 13
Chapter 2. Methods 14
2.1 Participants 14
2.2 Study Design and Procedures 14
2.3 Interventions 15
2.3.1 Kinect-based BIT 15
2.3.2 Therapist-based BIT 17
2.4 Outcome measures 18
2.4.1 Output data extracted from Kinect-based BIT program 19
2.4.2 Motor control strategies 19
2.4.3 Motor function in daily livings 20
2.4.4 Engagement 21
2.5 Data analysis 22
2.5.1 Data collection 22
2.5.2 Statistical analysis 24
Chapter 3. Results 25
3.1 Demographic data 25
3.2 Data recorded from Kinect-based BIT program 25
3.3 Effects of the interventions on motor control strategies 27
3.4 Effects of the interventions on motor function in daily livings 29
3.5 Effects of the interventions on engagement 30
Chapter 4. Discussion 31
4.1 Summary of the study results 31
4.2 Comparisons of motor performance between Master baker and Master I-Vender 32
4.3 Comparisons between Kinect-based BIT and therapist-based BIT 33
4.3.1 Unilateral UE motor control strategies and motor function in daily livings 34
4.3.2 Bilateral UE motor control strategies and motor function in daily livings 36
4.3.3 Engagement 41
4.4 Study limitations and suggestions for future work 42
Chapter 5. Conclusion 44
References 67
Appendix 1. Pediatric Motor Activity Log-Revised (PMAL-R) 74
Appendix 2. ABILHAND-Kids 76
Appendix 3. Engagement Questionnaire (EQ) - for children 77
Appendix 4. Engagement Questionnaire (EQ) - for parents 78
Appendix 5. Engagement Questionnaire (EQ) - for therapist 79
dc.language.isoen
dc.title雙側上肢體感動作訓練方案於單側偏癱腦性麻痺孩童之療效
zh_TW
dc.titleEffectiveness of a Kinect-based Bimanual Intensive Training Program in Children with Unilateral Cerebral Palsyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王湉妮(Tien-Ni Wang),林鋐宇(Hung-Yu Lin),傅中珮(Chung-Pei Fu),謝正宜(Jeng-Yi Shieh)
dc.subject.keyword腦性麻痺,體感裝置,虛擬實境,雙側上肢密集訓練,zh_TW
dc.subject.keywordcerebral palsy,Kinect,virtual reality,bimanual intensive training,en
dc.relation.page79
dc.identifier.doi10.6342/NTU202002382
dc.rights.note有償授權
dc.date.accepted2020-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept職能治療研究所zh_TW
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
U0001-0408202015485300.pdf
  目前未授權公開取用
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved