Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉建豪(Chien-Hao Liu)
dc.contributor.authorChieh-Cheng Yangen
dc.contributor.author楊傑程zh_TW
dc.date.accessioned2021-06-16T02:29:54Z-
dc.date.available2020-08-07
dc.date.copyright2020-08-07
dc.date.issued2020
dc.date.submitted2020-08-06
dc.identifier.citationREFERENCE
[1] D. Takahashi, S. Sawaki, R.-L. Mu, “Improvement of sound insulation performance of double-glazed windows by using viscoelastic connectors,” J. Sound Vib., vol. 371, pp. 56–66, 2016.
[2] N. B. Roozen, Q. Leclère, D. Urbán, T. Méndez Echenagucia, P. Block, M. Rychtáriková, and C. Glorieux, “Assessment of the airborne sound insulation from mobility vibration measurements ; a hybrid experimental numerical approach,” J. Sound Vib., vol. 432, pp. 680–698, 2018.
[3] H.-G. Kim, S. Goo, J. Jung, S. Wang , “Design optimization of a cellular-type noise insulation panel to improve transmission loss at low frequency,” J. Sound Vib., vol. 447, pp. 105–119, 2019.
[4] X. Shi, J. Wu, X. Wang, X. Zhou, X. Xie, and Z. Xue, “Novel sound insulation materials based on epoxy / hollow silica nanotubes composites,” Compos Part B-Eng, vol. 131, pp. 125–133, 2017.
[5] X. Wang, Y. Chen, G. Zhou, T. Chen, and F. Ma, “Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation,” J. Sound Vib., vol. 459, p. 114867, 2019.
[6] B. He, X. Xiao, Q. Zhou, Z. Li, and X. Jin, “Investigation into external noise of a high-speed train at different speeds,” J Zhejiang Univ-SCI A (Appl Phys Eng), vol. 15, pp. 1019–1033, 2014.
[7] X.-M. Tan, H.-F. Liu, Z.-G. Yang, J. Zhang, Z.-G. Wang and Y.-W. Wu, “Characteristics and Mechanism Analysis of Aerodynamic Noise Sources for High-Speed Train in Tunnel,” Complexity, vol. 12, p. 5858415, 2018.
[8] S. Moreau, M. Henner, D. Casalino, J. Gullbrand, G. Accarino and M. Wang, 'Toward the prediction of low-speed fan noise', Proc. Summer Progr. Center Turbulence Res., pp. 519-531, 2006.
[9] Y. Wang, J. Wang, and L. Fu, “Full-spectrum noise prediction of the high-speed train head under multi-physics coupling excitations based on statistical energy analysis,” J. Vibroengineering , Vol. 19, pp. 665–677, 2017.
[10] J. Jozwik , “Identification and monitoring of noise sources of CNC machine tools by acoustic holography methods,” Adv. Sci. Technol. Res. J., vol. 10, pp. 127–137, 2016.
[11] J. P. Arenas, “Recent Trends in Porous Sound-Absorbing Materials,” J. Sound Vib., vol. 44, pp. 12–18, 2010.
[12] L. Cao, Q. Fu, Y. Si, B. Ding, and J. Yu, “Porous materials for sound absorption,” Compos. Commun., vol. 10, pp. 25–35, 2018.
[13] X. Wu, K. Yeung, X. Li, R. C. Roberts, and J. Tian, “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett., vol. 10, p. 103505, 2018.
[14] H. Shao, H. He, Y. Chen, X. Tan, and G. Chen, “A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities,” Appl. Acoust., vol. 157, p. 107022, 2020.
[15] M. Molerón, M. Serra-Garcia, and C. Daraio, Visco-thermal effects in acoustic metamaterials: From total transmission to total reflection and high absorption, New J. Phys., vol. 18, p. 33003, 2016.
[16] X. Yu, Z. Lu, L. Cheng, and F. Cui, “On the sound insulation of acoustic metasurface using a sub-structuring approach,” J. Sound Vib., vol. 401, pp. 190–203, 2017.
[17] J. W. Jung, J. E. Kim, and J. W. Lee, “Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range,” Appl. Phys. Lett., vol. 112, p. 041903, 2018.
[18] S. Kumar, T. B. Xiang, and H. P. Lee, “Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation,” Appl. Acoust., vol. 159, p. 107088, 2020.
[19] D. Kim, J. Ih, and M. Åbom, “Virtual Herschel-Quincke tube using the multiple small resonators and acoustic metamaterials,” J. Sound Vib., vol. 466, p. 115045, 2020.
[20] J. Li and J. B. Pendry, “Hiding under the Carpet : A New Strategy for Cloaking,” Phys. Rev. Lett., vol. 203901, pp. 1–4, 2008.
[21] S. A.Cummer, B. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E, vol. 74, p. 036621, 2006.
[22] Schurig, D. et al., “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, vol. 314, pp. 977–981, 2006.
[23] L. Lu, T. Yamamoto, M. Otomori, T. Yamada, K. Izui, and S. Nishiwaki, “Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance,” Finite Elem. Anal. Des., vol. 72, pp. 1–12, 2013.
[24] S. Hyeon, C. Mahn, Y. Mun, Z. Guo, and C. Koo, “Acoustic metamaterial with negative density,” Phys. Lett. A, vol. 373, pp. 4464–4469, 2009.
[25] T. Yamada, K. Izui, and S. Nishiwaki, “Optimum design of an acoustic metamaterial with negative bulk modulus in an acoustic-elastic coupled system using a level set-based topology optimization method,” Int. J. Numer. Methods Eng. , vol. 113, pp. 1300-1339, 2018.
[26] V. M. Garc, “Quasi-two-dimensional acoustic metamaterial with negative bulk modulus,” Phys. Rev. B, vol. 85, p. 184102, 2012.
[27] Y. Ding, Z. Liu, C. Qiu, and J. Shi, “Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density,” Phys. Rev. Lett., vol. 99, p. 93904, 2007.
[28] N. Fang, D. Xi, J. Xu, M. Ambati, and W. Srituravanich, “Ultrasonic metamaterials with negative modulus,” Nat. Mater, vol. 5, pp. 452–456, 2006.
[29] F. Langfeldt and W. Gleine, “Membrane- and plate-type acoustic metamaterials with elastic unit cell edges,” J. Sound Vib., vol. 453, pp. 65–86, 2019.
[30] Z. Y. Caixing , Xi. Zhang, M. Yang, S. Xiao, “Hybrid membrane resonators for multiple frequency asymmetric absorption and reflection in large waveguide,” Appl. Phys. Lett., vol. 110, p. 021901, 2017.
[31] C. Meng, X. Zhang, S. T. Tang, M. Yang, and Z. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep., vol. 7, p. 43574, 2017.
[32] G. Ma, M. Yang, S. Xiao, Z. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater., vol. 13, pp. 873–878, 2014.
[33] J. Chen, Y. Chen, H. Chen, and Y. Yeh. “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure.” Materials Research Express, vol. 3, pp. 1–10, 2016.
[34] N. Jiménez, V. Romero-García, V. Pagneux, and J. P. Groby, “Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems,” Sci. Rep., vol. 7, p. 13595, 2017.
[35] H. Long, Y. Cheng, and X. Liu, “Asymmetric absorber with multiband and broadband for low-frequency sound,” Appl. Phys. Lett., vol. 111, p. 143502, 2017.
[36] X. Yu, Z. Lu, T. Liu, L. Cheng, J. Zhu, and F. Cui, “Sound transmission through a periodic acoustic metamaterial grating,” J. Sound Vib., vol. 449, pp. 140–156, 2019.
[37] L. J. Li, B. Zheng, L. M. Zhong, J. Yang, B. Liang, J. C. Cheng, “Broadband compact acoustic absorber with high-efficiency ventilation performance,” Appl. Phys. Lett., vol. 113, p. 103501, 2018.
[38] C. Shen, and J. Li, “Acoustic metacages for sound shielding with steady air flow,” J. Appl. Phys., vol. 123, p. 124501, 2018.
[39] Y. Li, S. Qi, and M. B. Assouar, “Theory of metascreen-based acoustic passive phased array,” New. J. Phys., vol. 18, p. 043024, 2016.
[40] K. Shi, G. Jin, R. Liu, T. Ye, and Y. Xue, “Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers,” Results Phys. , vol. 12, pp. 132-142, 2019.
[41] K. K. Shi, G. Y. Jin, R. J. Liu, T. G. Ye, Y. Q. Xue, “Acoustic superlens using Helmholtz- resonator-based metamaterials,” Appl. Phys. Lett., vol. 107, p. 193505, 2018.
[42] A. Santill and S. I. Bozhevolnyi, “Acoustic transparency and slow sound using detuned acoustic resonators,” Phys. Rev. B, vol. 84, p. 064304, 2011.
[43] A. Merkel, G. Theocharis, O. Richoux, V. Romero-Garcia, and V. Pagneux, “Control of acoustic absorption in one-dimensional scattering by resonant scatterers.,” Appl. Phys. Lett., vol. 107, p. 244102, 2015.
[44] X. Jiang, Y. Li, B. Liang, J. Cheng, and L. Zhang, “Convert Acoustic Resonances to Orbital Angular Momentum ,” Phys. Rev. Lett., vol. 117, p. 034301, 2016.
[45] Y. Li, X. Jiang, B. Liang, J. Cheng, and L. Zhang, “Metascreen-Based Acoustic Passive Phased Array,” Phys. Rev. Appl., vol. 4, p. 024003, 2015.
[46] L.-J. Li, B. Zheng, L.-M. Zhong, J. Yang, B. Liang, J.-C. Cheng, “Broadband compact acoustic absorber with high-efficiency ventilation performance,” Appl Phys Lett, vol. 113, p. 103501, 2018.
[47] R.Ghaffarivardavagh, J.Nikolajczyk, S.Anderson, andX.Zhang, “Ultra-open acoustic metamaterial silencer based on Fano-like interference,” Phys. Rev. B, vol. 99, p. 024302, 2019.
[48] H. Zhang, Y. Zhu, B. Liang, J. Yang, J. Yang, and J.-C. Cheng, “Omnidirectional ventilated acoustic barrier,” Appl. Phys. Lett., vol. 111, p. 203502, 2017.
[49] X. Zhu et al., “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun., vol. 7, p. 11731, 2016.
[50] J.H. Jeon, W. Hwang, K.H. Lee, “Measurement of Elastic Constants of Nano Honeycomb Structures,” , J. Compos. Mater., vol. 43, pp. 1155-1175, 2009.
[51] R. R Galgalikar, “Design Automation and Optimization of Honeycomb Structures for Maximum Sound Transmission Loss,” Master's thesis, Clemson University, 2012.
[52] Q. Zhang, X. Yang, P. Li, and G. Huang, “Progress in Materials Science Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation,” J. Prog. Mater. Sci., vol. 74, pp. 332–400, 2015.
[53] J. Jung, S. Hong, J. Song, and H. Kwon, “Acoustic insulation performance of a honeycomb panel using a transfer matrix method,” Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 232, pp. 392–401, 2018.
[54] A. B. Mišura, “On Calculating the Packing Efficiency for Embedding Hexagonal and Dodecagonal Sensors in a Circular Container,” Math. Probl. Eng., vol. 2019, p. 9624751, 2019.
[55] T. J. Lu, “Heat transfer efficiency of metal honeycombs,” Int. J. Heat Mass Transfer, vol. 42, pp. 2031-2040, 1999.
[56] A. J. Wang, D. McDowell, “Yield surfaces of various periodic metal honeycombs at intermediate relative density,” Int. J. Plast., vol. 21, pp. 285–320, 2005.
[57] S. Kim, S. Lorente, and A. Bejan, “Vascularised materials with heating from one side and Coolant Forced from the other side,” Int. J. Heat Mass Transfer, vol. 50, pp. 3498–3506, 2007.
[58] S. Craig and J. Grinham, “Breathing walls : The design of porous materials for heat exchange and decentralized ventilation,” Energy Build., vol. 149, pp. 246–259, 2017.
[59] S. Zhang, “Acoustic metamaterial design and applications,” 2010.
[60] T.Lectures, “Acoustics for Engineers,” 2009.
[61] R. A. Robinson, “An Electroacoustic Analysis of Transmission Line Loudspeakers,” 2007.
[62] F. C. Karal, “The analogous acoustical impedance for discontinuities of circular cross section,” J. Acoust. Soc. Am., vol. 25, pp. 327–334, 1953.
[63] W. Rostafinski, “Monograph on Propagation of Sound Waves in Curved Ducts,” NASA Ref. Publ., p. 1248, 1991.
[64] A. You, M. A. Y. Be, and I. In, “Sound attenuation in lined bends,” J. Acoust. Soc. Am. , vol. 116, pp. 1921–1931, 2004.
[65] C. K. W.Tam, “A study of sound transmission in curved duct bends by the Galerkin method,” J. Sound Vib., vol. 45, pp. 91–104, 1976.
[66] D. H. Keefe, A. H. Benade, “Wave propagation in strongly curved ducts,” J. Acoust. Soc. Am., vol. 74, pp. 320-332, 1983.
[67] S. Felix, J.-P. Dalmont, C.J. Nederveen, “Effects of bending portions of the air column on the acoustical resonances of a wind instrument,” J. Acoust. Soc. Am., vol. 131, pp. 4164–4172, 2012.
[68] S. Felix and V. Pagneux, “Sound propagation in rigid bends: a multimodal approach  : A multimodal approach,” J. Acoust. Soc. Am., vol. 110, pp. 1329-1337, 2001.
[69] S. Felix and V. Pagneux, “Sound attenuation in lined bends,” J. Acoust. Soc. Am., vol. 116, pp. 1921–1931, 2004.
[70] M. R. Stinson, “The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape,” J. Acoust. Soc. Am., vol. 89, pp. 550–558, 1991.
[71] R.E. Beatty Jr., “Boundary Layer Attenuation of Higher Order Modes in Rectangular and Circular Tubes,” J. Acoust. Soc. Am., vol. 22, pp. 850-854, 1950.
[72] P. A. Cotterill et al., “Thermo-viscous damping of acoustic waves in narrow channels: A comparison of effects in air and water,” J. Acoust. Soc. Am., vol. 144, p. 3421, 2018.
[73] W. B. Richards, “Propagation of Sound Waves in Tubes of Non Circular Cross Section,” NASA TP, vol. 2601, 1986.
[74] ASTM International, “ASTM E2611-17: Standard test method for normalincidence determination of porous material acoustical properties based on thetransfer matrix method,” ASTM Int., vol. i, pp. 1–14, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53795-
dc.description.abstract在本文中,開發了一種由進階的並連雙管道結構(SAPDD)組成的可透氣式聲波超材料,。在實際應用上,這種超材料可以組成一個隔板在微型化的同時實現通風、寬頻隔音和擁有良好的隔音性能以隔離寬頻噪音,並且其薄度可以達到次波長。此超材料之單元是由一對SAPDD組成,其六角蜂窩狀的外型可以在阻隔噪音源時達到更好的包覆率,並且亦能減少彎管效應。此外SAPDD具有兩個兩端開口的管道,利於冷卻用流體散發熱量。由於隔音時最容易漏音的頻率是共振頻率,因此SAPDD利用額外的中間管道連接雙管道,設計能量損失和結點阻抗來達到共振抑制。在本文中,藉由分析聲波於任意截面形狀的管道中傳播,以創建涵蓋彎曲管道和熱黏性效應的精確傳輸線模型,此模型比有限元素分析(FEA)更有效率的優化幾何參數。此傳輸線模型和FEA的結果相當的吻合,並且亦與正向入射實驗在量測區間內的結果非常接近。最終的超材料可以同時實現微型尺寸、通風能力和超寬頻隔音,六角形單元的厚度和體積分別僅為0.06 和 〖6.24×10〗^(-5) λ^3,並具有27.02% 的空氣通過率及-10 dB的工作頻寬涵蓋422 Hz至5886 Hz,相當於173.24%的分數帶寬。此聲波超材料未來有潛能應用於在有限空間內達到降噪並且需考慮散熱的情況。zh_TW
dc.description.abstractIn this thesis, a ventilated acoustic metamaterial composed of the structure of advanced parallel dual ducts (SAPDD) is developed to attain ventilation capability, broadband insulation, and insulation performance simultaneously in a miniature size. Practical applications have demonstrated that this metamaterial can constitute a panel to block broadband noises, and its thinness can reach subwavelength. A pair of the SAPDD composes a unit cell of the proposed metamaterial; the hexagonal honeycomb appearance can achieve better packing efficiency and reduce curved duct effects. Furthermore, the SAPDD has two ducts with open ends for coolant to dissipate the heat. Because the most critical frequencies for sound insulation are resonant frequencies, a SAPDD utilizes an additional middle duct connecting the dual ducts and successfully suppresses resonance with the appropriate design of energy losses and impedance at junctions. In this paper, the acoustic wave propagating in a duct of an arbitrary cross-sectional shape is analyzed in detail to create a precise transmission line model covering curved duct effects as well as thermoviscous effects and providing a method more efficient than finite element analysis (FEA) to optimize the geometric parameters. The results of the transmission line model and the FEA fit those of the normal incidence determination very well within the measured frequency range. The finalized metamaterial simultaneously achieves miniature size, ventilation capability, and ultra-broadband sound insulation. The thinness and the volume of the hexagonal unit cell are only 0.06 and 〖6.24×10〗^(-5) λ^3, respectively. Furthermore, the metamaterial has an air passage rate of 27.02 % and a -10 dB bandwidth ranging from 422 Hz to 5886 Hz, which equals a fractional bandwidth of 173.24 %. This metamaterial has great potential in the applications of sound insulation that require little space and are efficient in ventilation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:29:54Z (GMT). No. of bitstreams: 1
U0001-0408202015594500.pdf: 10675490 bytes, checksum: 8b561e4c431fc73cbe9d8f2cc71fa303 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Acoustic literature review 6
1.3 Thermal and packing strategy literature review 13
1.4 Thesis organization 16
Chapter 2 Modeling of Acoustic Systems 18
2.1 Ideal acoustic transmission line 18
2.2 Sound propagation in rigid bends 23
2.3 Lossy transmission line 30
Chapter 3 Structure of Parallel Dual Ducts 38
Chapter 4 Design Concepts of the Metamaterial 49
4.1 Geometry development 51
4.2 Fabrication 60
Chapter 5 Experiments 64
5.1 Acoustic waves propagation in a cylindrical waveguide 64
5.2 Experiments facilities and equipment 65
5.3 Standard Test Theory 67
5.4 Microphone Calibration 69
5.5 Measurement 70
Chapter 6 Results and Discussions 74
Chapter 7 Conclusions and Future Works 82
7.1 Conclusions 82
7.2 Future works 83
Appendix. Mode shape and frequency response 84
REFERENCE 89
dc.language.isoen
dc.subject聲學濾波器zh_TW
dc.subject聲學傳輸線zh_TW
dc.subject可透氣式聲波超材料zh_TW
dc.subject寬頻隔音zh_TW
dc.subjectacoustic filteren
dc.subjectacoustic transmission lineen
dc.subjectbroadband sound insulationen
dc.subjectventilated acoustic metamaterialen
dc.title以共振抑制實現超寬頻隔音之可透氣式聲波超材料zh_TW
dc.titleVentilated Acoustic Metamaterial for Ultra-broadband Sound Insulation Based on Resonance Suppressionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊嘉揚(Jia-Yang Juang),林資榕(Tzy-Rong Lin),陳蓉珊(Jung-San Chen),周元昉(Yuan-Fang Chou)
dc.subject.keyword可透氣式聲波超材料,寬頻隔音,聲學濾波器,聲學傳輸線,zh_TW
dc.subject.keywordventilated acoustic metamaterial,broadband sound insulation,acoustic filter,acoustic transmission line,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202002386
dc.rights.note有償授權
dc.date.accepted2020-08-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0408202015594500.pdf
  未授權公開取用
10.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved