Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53785
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張正憲(Jeng-Shiang Chang)
dc.contributor.authorBo-Wen Linen
dc.contributor.author林柏彣zh_TW
dc.date.accessioned2021-06-16T02:29:40Z-
dc.date.available2017-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-07-31
dc.identifier.citation[1] Nguyen, N.-T., and Wu, Z., 2005, 'Micromixers—a review,' Journal of Micromechanics and Microengineering, 15(2), p. R1.
[2] Hessel, V., Löwe, H., and Schönfeld, F., 2005, 'Micromixers—a review on passive and active mixing principles,' Chemical Engineering Science, 60(8), pp. 2479-2501.
[3] Liu, R. H., Stremler, M., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., 2000, 'Passive mixing in a three-dimensional serpentine microchannel,' Microelectromechanical Systems, Journal of, 9(2), pp. 190-197.
[4] Wang, H., Iovenitti, P., Harvey, E., and Masood, S., 2003, 'Numerical investigation of mixing in microchannels with patterned grooves,' Journal of Micromechanics and Microengineering, 13(6), # 801.
[5] Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezić, I., Stone, H. A., and Whitesides, G. M., 2002, 'Chaotic mixer for microchannels,' Science, 295(5555), pp. 647-651.
[6] Lu, L.-H., Ryu, K. S., and Liu, C., 2002, 'A magnetic microstirrer and array for microfluidic mixing,' Microelectromechanical Systems, Journal of, 11(5), pp. 462-469.
[7] Fu, L. M., Yang, R. J., Lin, C. H., and Chien, Y. S., 2005, 'A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency,' Electrophoresis, 26(9), pp. 1814-1824.
[8] Feng, J., Krishnamoorthy, S., and Sundaram, S., 2007, 'Numerical analysis of mixing by electrothermal induced flow in microfluidic systems,' Biomicrofluidics, 1(2), # 024102.
[9] Cao, J., Cheng, P., and Hong, F., 2008, 'A numerical study of an electrothermal vortex enhanced micromixer,' Microfluidics and Nanofluidics, 5(1), pp. 13-21.
[10] Ramos, A., Morgan, H., Green, N. G., and Castellanos, A., 1998, 'Ac electrokinetics: a review of forces in microelectrode structures,' Journal of Physics D: Applied Physics, 31(18), # 2338.
[11] Green, N. G., Ramos, A., González, A., Morgan, H., and Castellanos, A., 2000, 'Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements,' Physical review E, 61(4), # 4011.
[12] González, A., Ramos, A., Green, N. G., Castellanos, A., and Morgan, H., 2000, 'Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis,' Physical review E, 61(4), # 4019.
[13] Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., and Castellanos, A., 2002, 'Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation,' Physical review E, 66(2), # 026305.
[14] Meinhart, C., Wang, D., and Turner, K., 2003, 'Measurement of AC electrokinetic flows,' Biomedical microdevices, 5(2), pp. 139-145.
[15] Chen, D., and Du, H., 2006, 'Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system,' Journal of Micromechanics and Microengineering, 16(11), # 2411.
[16] Ng, W. Y., Goh, S., Lam, Y. C., Yang, C., and Rodríguez, I., 2009, 'DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels,' Lab on a Chip, 9(6), pp. 802-809.
[17] Wang, D., Sigurdson, M., and Meinhart, C. D., 2005, 'Experimental analysis of particle and fluid motion in ac electrokinetics,' Experiments in fluids, 38(1), pp. 1-10.
[18] Castellanos, A., Ramos, A., Gonzalez, A., Green, N. G., and Morgan, H., 2003, 'Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws,' Journal of Physics D: Applied Physics, 36(20), # 2584.
[19] Sin, M. L., Gau, V., Liao, J. C., and Wong, P. K., 2010, 'Electrothermal fluid manipulation of high-conductivity samples for laboratory automation applications,' Journal of the Association for Laboratory Automation, 15(6), pp. 426-432.
[20] Ng, W. Y., Goh, S., Lam, Y. C., Yang, C., and Rodríguez, I., 2009, 'DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels,' Lab on a Chip, 9(6), pp. 802-809.
[21] Ng, W. Y., Lam, Y. C., and Rodríguez, I., 2009, 'DC-Biased AC-Electrokinetic Mixing: A Mechanistic Investigation,' Proc. Advanced Materials Research, Trans Tech Publ, pp. 109-112.
[22] Ng, W. Y., Ramos, A., Lam, Y. C., Wijaya, I. P. M., and Rodriguez, I., 2011, 'DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow,' Lab on a Chip, 11(24), pp. 4241-4247.
[23] Sigurdson, M., Wang, D., and Meinhart, C. D., 2005, 'Electrothermal stirring for heterogeneous immunoassays,' Lab on a Chip, 5(12), pp. 1366-1373.
[24] Weast, R. C., 1969, 'Handbook of chemistry and physics,' The American Journal of the Medical Sciences, 257(6), # 423.
[25] prirody, M. o. l. u. b., von Reuss, F. F., and Wuttig, J. F. C., 1809, ' Memories from Fragment of the Imperial Society of Naturalists Moscow,' Press of the Imperial University.
[26] Chen, H., Zhang, Y., Mezic, I., Meinhart, C., and Petzold, L., 'Numerical simulation of an electroosmotic micromixer,' Proc. ASME 2003 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 653-658.
[27] Bazant, M. Z., and Ben, Y., 2006, 'Theoretical prediction of fast 3D AC electro-osmotic pumps,' Lab on a Chip, 6(11), pp. 1455-1461.
[28] Huang, S.-H., Wang, S.-K., Khoo, H. S., and Tseng, F.-G., 2007, 'AC electroosmotic generated in-plane microvortices for stationary or continuous fluid mixing,' Sensors and Actuators B: Chemical, 125(1), pp. 326-336.
[29] Yoon, M. S., Kim, B. J., and Sung, H. J., 2008, 'Pumping and mixing in a microchannel using AC asymmetric electrode arrays,' International Journal of Heat and Fluid Flow, 29(1), pp. 269-280.
[30] Chen, J.-K., Weng, C.-N., and Yang, R.-J., 2009, 'Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel,' Lab on a Chip, 9(9), pp. 1267-1273
[31] Kim, B. J., Yoon, S. Y., Lee, K. H., and Sung, H. J., 2009, 'Development of a microfluidic device for simultaneous mixing and pumping,' Experiments in Fluids, 46(1), pp. 85-95.
[32] 吳明至, 2006, '微懸臂梁感測器實驗數據分析及交流電場對反應面和微混合器之影響,' 臺灣大學應用力學研究所學位論文, pp. 1-85.
[33] Reynolds, O., 1883, 'An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,' Proceedings of the royal society of London, 35(224-226), pp. 84-99.
[34] Patankar, S., 1980, 'Numerical heat transfer and fluid flow,' CRC Press, pp. 102.
[35] Engler, M., Kockmann, N., Kiefer, T., and Woias, P., 2004, 'Numerical and experimental investigations on liquid mixing in static micromixers,' Chemical Engineering Journal, 101(1), pp. 315-322.
[36] Liu, Y. Z., Kim, B. J., and Sung, H. J., 2004, 'Two-fluid mixing in a microchannel,' International Journal of Heat and Fluid Flow, 25(6), pp. 986-995.
[37] Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., and Brooks, N. H., 2013, 'Mixing in inland and coastal waters, Elsevier,' pp. 30-54.
[38] Dutta, P., and Beskok, A., 2001, 'Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects,' Analytical chemistry, 73(9), pp. 1979-1986.
[39] Sunderland, J., 1987, 'Electrokinetic dewatering and thickening. I. Introduction and historical review of electrokinetic applications,' Journal of applied electrochemistry, 17(5), pp. 889-898.
[40] Chen, M.-H., 2004, '以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究.'
[41] Birdi, K., 2002, Handbook of surface and colloid chemistry, CRC Press, pp. 140-187.
[42] Gagnon, Z. R., and Chang, H.-C., 2009, 'Electrothermal ac electro-osmosis,' Applied Physics Letters, 94(2), # 024101.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53785-
dc.description.abstract在微流體系統中,交流電動力時常被用來做為操控粒子在流體中運動以及擾動流場的一種機制,交流電動力主要包含了介電泳、交流電滲,以及電熱效應,而這些交流電動力,則會因為電解質的帶電量,電解溶液的導電度,以及交流電場電壓、頻率的不同等而有所區分。
此外,在生醫與生化的領域中,常需要快速混合地兩種流體。一般之混合器使用機械式的攪拌來加速混合。然而,在微奈米尺度下,由於流體在微通道中呈現層流狀態,自然擴散即成為混合器中最主要的混合機制。但僅靠自然擴散來達到完全混合,則需要很長的微混合器通道及混合時間,不符微型混合器的設計要求。另外,若引進特殊的通道設計,以造成渦流等提升混合效率,則需付出消耗背壓的代價。因此,本研究將交流電動力效應應用於微混合器上以縮短擴散長度及混合時間,並提升混合效能。
本論文主要依據不同操作參數以及其影響因子探討微混合器之混合效能,並藉由數值模擬設計出三種不同的電極形狀以及最佳化之電極尺寸進行為混合器實驗,並結合相關理論及以有限元素法的模擬方式來解釋實驗中所觀察到的現象,使得理論、模擬與實驗間得以相互映證。其中,應用交流電動力效應之微混合器實驗結果顯示,分別在入口流率為10ul/hr與100ul/hr時能將混合指標有效地從自然擴散之40.15%與15.23%提升至85.55%與30.05%。
zh_TW
dc.description.abstractIn microfluidics, the study of AC-electrokinetics correlates with the motion behavior of particles in fluids. The AC electrokinetics involving the dielectrophoresis, AC electroosmosis or AC electrothermal effect will be generated according to charges of colloids, different properties of electrolytes or amplitude and frequency of external applied voltages.
In addition, Biomedical and Biochemical applications require rapid mixing of different fluid samples. The mechanism of mixing in micromixer is different from the mechanical mixer. At the micro scale level, the fluid flow is usually highly ordered laminar flow and lack of turbulence which make the diffusion be the primary mechanism for mixing. However, to achieve complete mixing only through pure diffusion takes a long time and needs a long mixing microchannel as well, which does not satisfy the ideal design for a micromixer. Besides, it consumes back pressure if we bring in the particular channel geometry and obstacle configuration for the microchannel design in order to produce vortices to increase the mixing efficiency. Therefore, we apply AC-eletrokinetics effect to mixing enhancement for a micromixer to short the mixing length and mixing time in this work.
This work uses three different types of microelectrodes and optimal microelectrode sizes to conduct the experiment. The analytical and numerical results were compared with experimental measurements conducted in this work. The results of the mixing index at the flow rate of 10ul/hr and 100ul/hr can be lifted effectively from 40.15% and 15.23% to 85.55% and 30.05% respectively by applying AC-eletrokinetics effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:29:40Z (GMT). No. of bitstreams: 1
ntu-104-R02543012-1.pdf: 10039505 bytes, checksum: e5cd46d2916d71368ed7ed71f5b85789 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 XII
第1章 緒論 1
1.1 簡介 1
1.2 文獻回顧 2
1.2.1 微混合器 2
1.2.2 電熱效應 2
1.2.3 交流電滲 3
1.3 研究動機 4
1.4 論文架構 5
第2章 微混合器介紹與交流電動力理論簡介 6
2.1 微混合器簡介 6
2.1.1 微混合器 6
2.1.2 雷諾數 8
2.1.3 培克數 8
2.1.4 混合指標 9
2.2 電場[10] 10
2.3 電熱力[10] 10
2.3.1 電流密度 10
2.3.2 在非齊性介質下的高斯定律 11
2.3.3 電荷守恆方程式 11
2.3.4 電熱力 12
2.4 溫度場[10] 13
2.5 不可壓縮流場[18] 13
2.5.1 Navier-Stokes方程式 13
2.5.2 不可壓縮流之連續方程式 14
2.6 濃度場[37] 15
2.6.1 菲克定律 15
2.6.2 對流擴散 16
2.7 電滲效應 18
2.7.1 電雙層 18
2.7.2 電滲流 19
2.7.3 電滲系統之基本假設 21
2.8 電場與離子濃度場[12] 22
2.9 電滲流場原理[12] 24
第3章 數值模擬與邊界條件設定 25
3.1 微通道之電熱力模擬 25
3.1.1 初始模型建立 25
3.1.2 微電極圖形設計 25
3.1.3 微通道高度設計 27
3.1.4 模擬之邊界條件設定 28
3.1.5 模擬結果與討論 31
3.2 微通道之不均勻導電度場模擬 33
3.2.1 初始模型建立 34
3.2.2 模擬之邊界條件設定 34
3.2.3 模擬結果與討論 38
第4章 實驗設備與方法 39
4.1 實驗晶片之製程材料選用 39
4.2 微電極製作 40
4.2.1 金屬蒸鍍 41
4.2.2 光學微影 42
4.3 微通道製作 44
4.3.1 微通道母模製作 45
4.3.2 PDMS微通道翻模 46
4.5 實驗架設與方法 48
4.5.1 實驗架設 48
4.5.2 實驗方法 49
第5章 實驗與模擬結果探討 50
5.1 交流電動力對混合效能的影響 50
5.2 交流電訊號之相位對混合效能的影響 53
5.3 電極圖形對混合效能的影響 54
5.4 交流電訊號之頻率對混合效能的影響 56
5.5 導電度對混合效能的影響 71
第6章 結論與未來展望 80
6.1 結論 80
6.2 未來展望 81
參考文獻 82
dc.language.isozh-TW
dc.title以交流電動力提升微混合器效能之實驗與數值模擬研究zh_TW
dc.titleExperimental and Numerical Study of Mixing Enhancement for a Micromixer with Applying AC-Electrokineticsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳光鐘(Kuang-Chong Wu),陳世豪
dc.subject.keyword交流電動力,電熱效應,微混合器,有限元素法,混合指標,zh_TW
dc.subject.keywordAC-electrokinetics,AC electrothermal effect,micromixer,numerical method,mixing index,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2015-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
9.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved