Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53779
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學(Ming-Shyue Lee)
dc.contributor.authorMing-Shan Chengen
dc.contributor.author鄭名珊zh_TW
dc.date.accessioned2021-06-16T02:29:32Z-
dc.date.available2025-07-31
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-07-31
dc.identifier.citation1. Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21(3):497-503.
2. Hanahan D Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646-674.
3. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA: a cancer journal for clinicians 65(1):5-29.
4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA: a cancer journal for clinicians 65(2):87-108.
5. Feldman BJ Feldman D (2001) The development of androgen-independent prostate cancer. Nature reviews. Cancer 1(1):34-45.
6. Grubb RL, 3rd Kibel AS (2007) Prostate cancer: screening, diagnosis and management in 2007. Missouri medicine 104(5):408-413; quiz 413-404.
7. Huggins C (1978) Endocrine-induced regression of cancers. American journal of surgery 136(2):233-238.
8. Kasper S Cookson MS (2006) Mechanisms leading to the development of hormone-resistant prostate cancer. The Urologic clinics of North America 33(2):201-210, vii.
9. Palmberg C, Koivisto P, Visakorpi T, Tammela TL (1999) PSA decline is an independent prognostic marker in hormonally treated prostate cancer. European urology 36(3):191-196.
10. Hoimes CJ Kelly WK (2010) Redefining hormone resistance in prostate cancer. Therapeutic advances in medical oncology 2(2):107-123.
11. Mangray S King TC (1998) Molecular pathobiology of pancreatic adenocarcinoma. Frontiers in bioscience : a journal and virtual library 3:D1148-1160.
12. Zhou J Du Y (2012) Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Molecular cancer research : MCR 10(6):768-777.
13. Carmeliet P Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298-307.
14. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. American journal of physiology. Cell physiology 307(1):C25-38.
15. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Seminars in oncology 29(6 Suppl 16):15-18.
16. Jayson GC, Hicklin DJ, Ellis LM (2012) Antiangiogenic therapy--evolving view based on clinical trial results. Nature reviews. Clinical oncology 9(5):297-303.
17. Ang-Lee MK, Moss J, Yuan CS (2001) Herbal medicines and perioperative care. Jama 286(2):208-216.
18. Craig WJ (1999) Health-promoting properties of common herbs. The American journal of clinical nutrition 70(3 Suppl):491S-499S.
19. Simpson EL, Law SV, Storrs FJ (2004) Prevalence of botanical extract allergy in patients with contact dermatitis. Dermatitis : contact, atopic, occupational, drug 15(2):67-72.
20. Hayashi K, Kamiya M, Hayashi T (1995) Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta medica 61(3):237-241.
21. Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, Lee MY, Au SW, Cheng CH, Lau CB, Tsui SK, Wan DC, Waye MM, Wong KB, Wong CK, Lam CW, Leung PC, Fung KP (2008) Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of ethnopharmacology 118(1):79-85.
22. Ren X, Sui X, Yin J (2011) The effect of Houttuynia cordata injection on pseudorabies herpesvirus (PrV) infection in vitro. Pharmaceutical biology 49(2):161-166.
23. Chiang LC, Chang JS, Chen CC, Ng LT, Lin CC (2003) Anti-Herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. The American journal of Chinese medicine 31(3):355-362.
24. Rabe T van Staden J (1997) Antibacterial activity of South African plants used for medicinal purposes. Journal of ethnopharmacology 56(1):81-87.
25. Lu H, Wu X, Liang Y, Zhang J (2006) Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia THUNB. Chemical pharmaceutical bulletin 54(7):936-940.
26. Li GZ, Chai OH, Lee MS, Han EH, Kim HT, Song CH (2005) Inhibitory effects of Houttuynia cordata water extracts on anaphylactic reaction and mast cell activation. Biological pharmaceutical bulletin 28(10):1864-1868.
27. Lee JS, Kim IS, Kim JH, Kim JS, Kim DH, Yun CY (2008) Suppressive effects of Houttuynia cordata Thunb (Saururaceae) extract on Th2 immune response. Journal of ethnopharmacology 117(1):34-40.
28. Park E, Kum S, Wang C, Park SY, Kim BS, Schuller-Levis G (2005) Anti-inflammatory activity of herbal medicines: inhibition of nitric oxide production and tumor necrosis factor-alpha secretion in an activated macrophage-like cell line. The American journal of Chinese medicine 33(3):415-424.
29. Kim IS, Kim JH, Kim JS, Yun CY, Kim DH, Lee JS (2007) The inhibitory effect of Houttuynia cordata extract on stem cell factor-induced HMC-1 cell migration. Journal of ethnopharmacology 112(1):90-95.
30. Han EH, Park JH, Kim JY, Jeong HG (2009) Houttuynia cordata water extract suppresses anaphylactic reaction and IgE-mediated allergic response by inhibiting multiple steps of FcepsilonRI signaling in mast cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 47(7):1659-1666.
31. Kusirisin W, Srichairatanakool S, Lerttrakarnnon P, Lailerd N, Suttajit M, Jaikang C, Chaiyasut C (2009) Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Medicinal chemistry 5(2):139-147.
32. Lu HM, Liang YZ, Yi LZ, Wu XJ (2006) Anti-inflammatory effect of Houttuynia cordata injection. Journal of ethnopharmacology 104(1-2):245-249.
33. Pereira RL, Ibrahim T, Lucchetti L, da Silva AJ, Goncalves de Moraes VL (1999) Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology 43(1):31-37.
34. Lu HM, Liang YZ, Chen S (2006) Identification and quality assessment of Houttuynia cordata injection using GC-MS fingerprint: a standardization approach. Journal of ethnopharmacology 105(3):436-440.
35. Ji K, Chen J, Li M, Liu Z, Xia L, Wang C, Zhan Z, Wu X (2009) Comments on serious anaphylaxis caused by nine Chinese herbal injections used to treat common colds and upper respiratory tract infections. Regulatory toxicology and pharmacology : RTP 55(2):134-138.
36. Li W, Zhou P, Zhang Y, He L (2011) Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Journal of ethnopharmacology 133(2):922-927.
37. Lai KC, Chiu YJ, Tang YJ, Lin KL, Chiang JH, Jiang YL, Jen HF, Kuo YH, Agamaya S, Chung JG, Yang JS (2010) Houttuynia cordata Thunb extract inhibits cell growth and induces apoptosis in human primary colorectal cancer cells. Anticancer research 30(9):3549-3556.
38. Prommaban A, Kodchakorn K, Kongtawelert P, Banjerdpongchai R (2012) Houttuynia cordata Thunb fraction induces human leukemic Molt-4 cell apoptosis through the endoplasmic reticulum stress pathway. Asian Pacific journal of cancer prevention : APJCP 13(5):1977-1981.
39. Chen YF, Yang JS, Chang WS, Tsai SC, Peng SF, Zhou YR (2013) Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells. Journal of biomedical science 20:18.
40. Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes development 23(4):397-418.
41. Mehlen P Puisieux A (2006) Metastasis: a question of life or death. Nature reviews. Cancer 6(6):449-458.
42. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nature reviews. Cancer 5(7):505-515.
43. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET, Cance WG (1995) Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer research 55(13):2752-2755.
44. McLean GW, Komiyama NH, Serrels B, Asano H, Reynolds L, Conti F, Hodivala-Dilke K, Metzger D, Chambon P, Grant SG, Frame MC (2004) Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes development 18(24):2998-3003.
45. Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC, Muller WJ (2007) Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proceedings of the National Academy of Sciences of the United States of America 104(51):20302-20307.
46. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and cellular biology 14(3):1680-1688.
47. Brown MC Turner CE (2004) Paxillin: adapting to change. Physiological reviews 84(4):1315-1339.
48. Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM (2000) Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. The Journal of cell biology 148(5):957-970.
49. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nature reviews. Molecular cell biology 8(3):221-233.
50. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular research 69(3):562-573.
51. Itoh Y Nagase H (2002) Matrix metalloproteinases in cancer. Essays in biochemistry 38:21-36.
52. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS journal 278(1):16-27.
53. Visse R Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation research 92(8):827-839.
54. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284(5751):67-68.
55. Liotta LA (1986) Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer research 46(1):1-7.
56. Devarajan P, Johnston JJ, Ginsberg SS, Van Wart HE, Berliner N (1992) Structure and expression of neutrophil gelatinase cDNA. Identity with type IV collagenase from HT1080 cells. The Journal of biological chemistry 267(35):25228-25232.
57. Kleiner DE Stetler-Stevenson WG (1999) Matrix metalloproteinases and metastasis. Cancer chemotherapy and pharmacology 43 Suppl:S42-51.
58. Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A (2009) Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncology reports 21(5):1323-1333.
59. Schmalfeldt B, Prechtel D, Harting K, Spathe K, Rutke S, Konik E, Fridman R, Berger U, Schmitt M, Kuhn W, Lengyel E (2001) Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 7(8):2396-2404.
60. Howard EW Banda MJ (1991) Binding of tissue inhibitor of metalloproteinases 2 to two distinct sites on human 72-kDa gelatinase. Identification of a stabilization site. The Journal of biological chemistry 266(27):17972-17977.
61. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. The Journal of biological chemistry 270(10):5331-5338.
62. Kinoshita T, Sato H, Okada A, Ohuchi E, Imai K, Okada Y, Seiki M (1998) TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. The Journal of biological chemistry 273(26):16098-16103.
63. Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d'Ortho MP, Murphy G (1998) The TIMP2 membrane type 1 metalloproteinase 'receptor' regulates the concentration and efficient activation of progelatinase A. A kinetic study. The Journal of biological chemistry 273(2):871-880.
64. Hernandez-Barrantes S, Toth M, Bernardo MM, Yurkova M, Gervasi DC, Raz Y, Sang QA, Fridman R (2000) Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation. The Journal of biological chemistry 275(16):12080-12089.
65. Olson MW, Gervasi DC, Mobashery S, Fridman R (1997) Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. The Journal of biological chemistry 272(47):29975-29983.
66. Toth M, Chvyrkova I, Bernardo MM, Hernandez-Barrantes S, Fridman R (2003) Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochemical and biophysical research communications 308(2):386-395.
67. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. The Journal of biological chemistry 274(19):13066-13076.
68. Liabakk NB, Talbot I, Smith RA, Wilkinson K, Balkwill F (1996) Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer research 56(1):190-196.
69. Mendes O, Kim HT, Stoica G (2005) Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clinical experimental metastasis 22(3):237-246.
70. Gupta A, Zhou CQ, Chellaiah MA (2013) Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells. Cancers 5(2):617-638.
71. Zhu SK, Zhou Y, Cheng C, Zhong S, Wu HQ, Wang B, Fan P, Xiong JX, Yang HJ, Wu HS (2014) Overexpression of membrane-type 2 matrix metalloproteinase induced by hypoxia-inducible factor-1alpha in pancreatic cancer: Implications for tumor progression and prognosis. Molecular and clinical oncology 2(6):973-981.
72. Duffy MJ (2004) The urokinase plasminogen activator system: role in malignancy. Current pharmaceutical design 10(1):39-49.
73. Andreasen PA, Kjoller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. International journal of cancer. Journal international du cancer 72(1):1-22.
74. Sheng S (2001) The urokinase-type plasminogen activator system in prostate cancer metastasis. Cancer metastasis reviews 20(3-4):287-296.
75. Brunner N, Pyke C, Hansen CH, Romer J, Grondahl-Hansen J, Dano K (1994) Urokinase plasminogen activator (uPA) and its type 1 inhibitor (PAI-1): regulators of proteolysis during cancer invasion and prognostic parameters in breast cancer. Cancer treatment and research 71:299-309.
76. Ulisse S, Baldini E, Sorrenti S, D'Armiento M (2009) The urokinase plasminogen activator system: a target for anti-cancer therapy. Current cancer drug targets 9(1):32-71.
77. Jankun J Skrzypczak-Jankun E (1999) Molecular basis of specific inhibition of urokinase plasminogen activator by amiloride. Cancer biochemistry biophysics 17(1-2):109-123.
78. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investigative urology 17(1):16-23.
79. Webber MM, Trakul N, Thraves PS, Bello-DeOcampo D, Chu WW, Storto PD, Huard TK, Rhim JS, Williams DE (1999) A human prostatic stromal myofibroblast cell line WPMY-1: a model for stromal-epithelial interactions in prostatic neoplasia. Carcinogenesis 20(7):1185-1192.
80. Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS (1997) Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18(6):1215-1223.
81. Berthon P, Cussenot O, Hopwood L, Leduc A, Maitland N (1995) Functional expression of sv40 in normal human prostatic epithelial and fibroblastic cells - differentiation pattern of nontumorigenic cell-lines. International journal of oncology 6(2):333-343.
82. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ (2010) Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39(4):425-435.
83. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer cell 4(1):19-29.
84. Storgard C, Mikolon D, Stupack DG (2005) Angiogenesis assays in the chick CAM. Methods in molecular biology 294:123-136.
85. Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. Seminars in cancer biology 10(6):415-433.
86. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH (2008) Evolving role of uPA/uPAR system in human cancers. Cancer treatment reviews 34(2):122-136.
87. Mackay AR, Corbitt RH, Hartzler JL, Thorgeirsson UP (1990) Basement membrane type IV collagen degradation: evidence for the involvement of a proteolytic cascade independent of metalloproteinases. Cancer research 50(18):5997-6001.
88. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S (1999) Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. The Prostate 39(2):123-129.
89. Wang W, Abbruzzese JL, Evans DB, Chiao PJ (1999) Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 18(32):4554-4563.
90. Ho YC, Yang SF, Peng CY, Chou MY, Chang YC (2007) Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. Journal of oral pathology medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 36(10):588-593.
91. Senthilkumar K, Arunkumar R, Elumalai P, Sharmila G, Gunadharini DN, Banudevi S, Krishnamoorthy G, Benson CS, Arunakaran J (2011) Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell biochemistry and function 29(2):87-95.
92. Gerg M, Kopitz C, Schaten S, Tschukes A, Kahlert C, Stangl M, von Weyhern CW, Brucher BL, Edwards DR, Brand K, Kruger A (2008) Distinct functionality of tumor cell-derived gelatinases during formation of liver metastases. Molecular cancer research : MCR 6(3):341-351.
93. Carmeliet P Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249-257.
94. Kato T, Kure T, Chang JH, Gabison EE, Itoh T, Itohara S, Azar DT (2001) Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS letters 508(2):187-190.
95. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. The Journal of biological chemistry 267(36):26031-26037.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53779-
dc.description.abstract在台灣癌症死亡率排名已三十多年蟬聯冠軍。其中,這十年來,攝護腺癌和胰腺癌死亡增加率,遠高於其他癌症。大多數癌症患者在確診為癌症初期,其治癒率很高,但一旦癌症發生局部浸潤或轉移,發展成晚期癌症時,患者的預後往往極差。其中,癌細胞的侵襲以及血管新生是促使腫瘤由良性轉變成惡性的兩大關鍵步驟,包含組織重塑以及促使腫瘤進展。雖然對於癌症治療的相關研究不斷在進行,直至今日仍尚未出現對轉移性癌症具效用的療法。針對轉移性癌症,化學治療是普遍常用的療法之一,但大多數化療藥物有嚴重的副作用,使患者疲勞、噁心、嘔吐以及造成身體虛弱。雖然已有標靶藥物的出現,大多只限於某些階段或特定類型的癌症。因此針對此癌症開發具療效且低毒性的新藥物,有迫切性的需要。天然植物萃取物一般具低毒性且草藥原料被使用於保健已有長期的經驗。因此從天然植物萃取物找出有效成份作為治療癌症的輔助療法或者替代療法,是一種潛力相對較高的方式。其中,HC已被廣泛應用在台灣和中國,用於抗病毒、抗菌、抗發炎及對抗癌症等方面。雖然HC已用於抑制癌症病程,但其有效成分尚不清楚。在本篇研究中,我想釐清HC萃取物是否具有療效成分能夠抑制人類腫瘤細胞的侵襲和血管生成,並且探討HCE抑制癌細胞侵襲力的作用機制。與中研院農生中心蕭培文老師及生物技術開發中心賴宗賢、錢瑤珍老師合作,HC酒精萃取物經高效能液相層析法分離出最有效的區分(命名為HCE)。結果顯示HCE能夠有效地抑制多種癌細胞的侵襲能力。這些癌細胞包括前列腺癌細胞(PC-3)以及胰腺癌細胞(Capan-1和PANC-1),有趣的是對低侵入性的MIAPaCa-2細胞的侵襲能力卻較不具影響力。在PC-3、PANC-1和Capan-1細胞中,發現HCE可經由調降第九型基質金屬蛋白酶九號(MMP9)和uPA的細胞表現量,降低其活性。同時HCE也透過降低FAK、Src的磷酸化,以及paxillin蛋白質的量,進而抑制癌細胞侵襲力。此外,HCE也可以減少HUVEC細胞的管狀構造形成以及雞胚絨毛尿囊血管的形成,顯示HCE也能夠抑制血管新生。總結以上的結果,HCE可以透過抑制FAK / Src的訊息傳遞以及MMP9、uPA的表達,進而有效地抑制癌細胞的侵襲能力。因此,HCE具有應用於腫瘤治療的相當潛力。zh_TW
dc.description.abstractCancer has been the leading cause of death in Taiwan for over thirty years. In the latest ten years, the mortality of both prostate and pancreatic cancers accelerates more rapidly than the other types of cancer in Taiwanese population. Most of the cancer patients diagnosed at early stages often have a well treatment with a high cure rate. However, once cancer progresses to an advanced stage with local invasion or metastasis, the prognosis of patients becomes poor. Two crucial steps that allow benign tumors to go malignant are cancer cell invasion and angiogenesis. Angiogenesis, sprouting of blood vessels from existing vasculature, is an important process involved in tissue remodeling and tumor progression. Although chemotherapy is often used to treat cancer, most of chemotherapeutic drugs have severe side effects and make the patients painful and weakening. Less toxic therapeutics are needed to improve the outcomes of cancer treatment. Although there are numerous target therapies available, they are all limited to use in certain stages or specific types of cancer. Therefore, to discover a new drug with low toxicity and high efficacy is imperative for cancer therapy. Herbal medicine has been evolved as preferred alternative treatments by patients with malignancies for many years, due to its low toxicity. Among them, HC has been wildly used in Taiwan and Eastern counties as a medicine for anti-virus, anti-bacteria, anti-cancer and anti-inflammation. In this study, I examined whether HC herbal extracts had effective ingredients to inhibit human cancer cell invasion and angiogenesis, as well as the underlying molecular mechanisms. Through collaborations with Drs. Pei-Wen Hsiao, Tzung-Hsein Lai and Yau-Jan Chyan, dry HC was extracted with ethanol and fractioned by HPLC. In cell invasion assays, the results showed that the most effective fraction, called HCE, could inhibit prostate cancer (PC-3) and pancreatic cancer (Capan-1 and PANC-1) cell invasion in a dose-response manner, however its effect on the poorly invasive MIAPaCa-2 cells was insignificant. Moreover, we identify that HCE was able to inhibit the expression levels of matrix metalloprotease-2, -3, -9, and uPA and decrease the phosphorylation levels of FAK, Src and paxillin. In addition, the effect of HCE on angiogenesis was further quested by the tube formation of HUVEC cells and CAM assays. The results suggest that HCE were able to suppress angiogenesis. In conclusion, the data indicate that HCE can effectually inhibit prostate and pancreatic cancer cell invasion, via down-regulation of pericellular proteolysis and FAK/Src signaling. The promising effects merit further study to identify the effective components of HCE and their therapeutic potentials.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:29:32Z (GMT). No. of bitstreams: 1
ntu-104-R02442006-1.pdf: 4532435 bytes, checksum: 2d758990b4af1e44cbe8a988c4d87385 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝.................................................ii
中文摘要...............................................I
Abstract............................................III
Chapter 1. Introduction...............................1
1.1 Cancer progression and metastasis.............2
1.1.1 Prostate cancer.................................3
1.1.2 Pancreatic cancer...............................3
1.2 Angiogenesis......................................4
1.3 HC............................................5
1.4 Signaling pathway.............................6
1.4.1 FAK pathway.....................................6
1.5 Matrix metalloproteinase (MMP)................7
1.5.1 MMP2/9..........................................8
1.6 Urokinase plasminogen activator system............9
1.7 Research motivation..........................10
Chapter 2. Materials and Methods.....................11
2.1 Materials........................................12
2.1.1 Cell lines.....................................12
2.1.2 Animals........................................13
2.1.3 Antibodies.....................................13
2.1.4 Enzymes........................................13
2.1.5 Reagents.......................................14
2.1.6 Buffers........................................17
2.2 Methods..........................................20
2.2.1 Cell culture...................................20
2.2.2 HCE treatment..................................21
2.2.3 Cell viability assay...........................21
2.2.4 Cell growth assay..............................22
2.2.5 Cell invasion assay............................22
2.2.6 Quantitative Real-Time PCR.....................23
2.2.7 Gelatin zymography.............................26
2.2.8 Western blot...................................27
2.2.9 Lentiviral particle preparation and infection..28
2.2.10 HCE extraction................................30
2.2.11 Immunohistochemistry (IHC)....................30
2.2.12 Tube formation assay..........................32
2.2.13 Chick chorioallantoic membrane assay..........32
Chapter 3. Results...................................35
3.1 Effects of HCE on the cell viability and growth of prostate and pancreatic cancer cells.................36
3.2 Effect of HCE on prostate and pancreatic cell invasion.............................................37
3.3 Effect of HCE on the gene expression, gelatinolytic activity and secretion of matrix metalloproteases and tissue inhibitors of metalloproteinase in prostate and pancreatic cancer cells..............................38
3.4 Effects of HCE on uPA and PAI1 in prostate and pancreatic cancer cells..............................40
3.5 Role of uPA in HCE-treated PC-3 and PANC-1 cells.40
3.6 Effect of HCE on the phosphorylation and protein levels of several signal molecules related to the FAK pathways in PC-3 cells. .............................42
3.7 HCE decreased the uPA levels in PC-3 xenograft tumor tissues..............................................42
3.8 Effects of HCE on the tube formation of HUVEC cells................................................43
3.9 Effects of HCE on the angiogenesis using chicken chorioallantoic membrane assay.......................44
Chapter 4. Discussion................................46
Chapter 5. Figures...................................52
Chapter 6. References................................90
dc.language.isoen
dc.subject癌症zh_TW
dc.subject轉移zh_TW
dc.subject蛋白?zh_TW
dc.subject中草藥zh_TW
dc.subject血管新生zh_TW
dc.subjectMMPen
dc.subjectherbal medicineen
dc.subjectcanceren
dc.subjectinvasionen
dc.subjectangiogenesisen
dc.subjectuPAen
dc.titleHCE萃取物對癌細胞侵襲能力以及血管新生的影響zh_TW
dc.titleEffects of HCE on cancer cell invasion and angiogenesisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林榮耀(Jung-Yaw Lin),顧記華(Jih-Hwa Guh),蕭培文(Pei-Wen Hsiao)
dc.subject.keyword中草藥,癌症,轉移,蛋白?,血管新生,zh_TW
dc.subject.keywordherbal medicine,cancer,invasion,angiogenesis,uPA,MMP,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2015-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved