請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳君泰(June-Tai Wu) | |
| dc.contributor.author | Zong-Siou Shih | en |
| dc.contributor.author | 史宗修 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:29:28Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-31 | |
| dc.identifier.citation | 1. Bird, A., Perceptions of epigenetics. Nature, 2007. 447(7143): p. 396-398. 2. Vignali, M., et al., ATP-Dependent Chromatin-Remodeling Complexes. Molecular and Cellular Biology, 2000. 20(6): p. 1899-1910. 3. Clapier, C.R. and B.R. Cairns, The biology of chromatin remodeling complexes. Annu Rev Biochem, 2009. 78: p. 273-304. 4. Jin, C. and G. Felsenfeld, Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Development, 2007. 21(12): p. 1519-1529. 5. Kamakaka, R.T. and S. Biggins, Histone variants: deviants? Genes Dev, 2005. 19(3): p. 295-310. 6. Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002. 16(1): p. 6-21. 7. Kouzarides, T., Chromatin Modifications and Their Function. Cell, 2007. 128(4): p. 693-705. 8. Bannister, A.J. and T. Kouzarides, Regulation of chromatin by histone modifications. Cell Res, 2011. 21(3): p. 381-395. 9. Musselman, C.A., et al., Perceiving the epigenetic landscape through histone readers. Nature structural molecular biology, 2012. 19(12): p. 1218-1227. 10. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 2003. 33: p. 245-254. 11. Grewal, S.I.S. and D. Moazed, Heterochromatin and Epigenetic Control of Gene Expression. Science, 2003. 301(5634): p. 798-802. 12. Tarakhovsky, A., Tools and landscapes of epigenetics. Nat Immunol, 2010. 11(7): p. 565-8. 13. Musselman, C.A., et al., Perceiving the epigenetic landscape through histone readers. Nature Structural Molecular Biology, 2012. 19(12): p. 1218-1227. 14. Tachibana, M., et al., G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Development, 2002. 16(14): p. 1779-1791. 15. Ogryzko, V.V., et al., The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases. Cell, 1996. 87(5): p. 953-959. 16. Cress, W.D. and E. Seto, Histone deacetylases, transcriptional control, and cancer. Journal of Cellular Physiology, 2000. 184(1): p. 1-16. 17. Kowalczyk, Monika S., et al., Intragenic Enhancers Act as Alternative Promoters. Molecular Cell, 2012. 45(4): p. 447-458. 18. Tie, F., et al., CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development, 2009. 136(18): p. 3131-3141. 19. Villa, R., et al., Role of the Polycomb Repressive Complex 2 in Acute Promyelocytic Leukemia. Cancer Cell, 2007. 11(6): p. 513-525. 20. Yun, M., et al., Readers of histone modifications. Cell Research, 2011. 21(4): p. 564-578. 21. Jang, M.K., et al., The Bromodomain Protein Brd4 Is a Positive Regulatory Component of P-TEFb and Stimulates RNA Polymerase II-Dependent Transcription. Molecular Cell, 2005. 19(4): p. 523-534. 22. Yang, Z., et al., Recruitment of P-TEFb for Stimulation of Transcriptional Elongation by the Bromodomain Protein Brd4. Molecular Cell, 2005. 19(4): p. 535-545. 23. Zuber, J., et al., RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 2011. 478(7370): p. 524-528. 24. Tamkun, J.W., et al., brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell, 1992. 68(3): p. 561-572. 25. Zeng, L. and M.-M. Zhou, Bromodomain: an acetyl-lysine binding domain. FEBS Letters, 2002. 513(1): p. 124-128. 26. Mujtaba, S., L. Zeng, and M.M. Zhou, Structure and acetyl-lysine recognition of the bromodomain. Oncogene, 0000. 26(37): p. 5521-5527. 27. Filippakopoulos, P., et al., Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 2012. 149(1): p. 214-31. 28. Sanchez, R. and M.-M. Zhou, The role of human bromodomains in chromatin biology and gene transcription. Current opinion in drug discovery development, 2009. 12(5): p. 659-665. 29. Yang, X.J., Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays, 2004. 26(10): p. 1076-87. 30. Owen, D.J., et al., The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Embo j, 2000. 19(22): p. 6141-9. 31. Mujtaba, S., et al., Structural Basis of Lysine-Acetylated HIV-1 Tat Recognition by PCAF Bromodomain. Molecular Cell, 2002. 9(3): p. 575-586. 32. Mujtaba, S., et al., Structural Mechanism of the Bromodomain of the Coactivator CBP in p53 Transcriptional Activation. Molecular Cell, 2004. 13(2): p. 251-263. 33. Lamonica, J.M., et al., Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proceedings of the National Academy of Sciences, 2011. 108(22): p. E159-E168. 34. Field, M., et al., Mutations in the BRWD3 gene cause X-linked mental retardation associated with macrocephaly. American Journal of Human Genetics, 2007. 81(2): p. 367-374. 35. Ozturk, N., et al., Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc Natl Acad Sci U S A, 2013. 110(13): p. 4980-5. 36. Higa, L.A., et al., CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 2006. 8(11): p. 1277-1283. 37. Fischer, Eric S., et al., The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation. Cell, 2011. 147(5): p. 1024-1039. 38. Chen, W.Y., et al., Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3. EMBO Rep, 2015. 16(4): p. 528-38. 39. Baneyx, F., Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 1999. 10(5): p. 411-421. 40. Baneyx, F. and M. Mujacic, Recombinant protein folding and misfolding in Escherichia coli. Nat Biotech, 2004. 22(11): p. 1399-1408. 41. Guan, K. and J.E. Dixon, Eukaryotic proteins expressed in Escherichia coli: An improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Analytical Biochemistry, 1991. 192(2): p. 262-267. 42. Smith, D.B. and K.S. Johnson, Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 1988. 67(1): p. 31-40. 43. Harper, S. and D.W. Speicher, Expression and purification of GST fusion proteins. Current Protocols in Protein Science. Vol. Unit 6.6. 2008 44. Wu, Y., Q. Li, and X.Z. Chen, Detecting protein-protein interactions by Far western blotting. Nat Protoc, 2007. 2(12): p. 3278-84. 45. Zeng, L. and M.M. Zhou, Bromodomain: an acetyl-lysine binding domain. FEBS Lett, 2002. 513(1): p. 124-8. 46. Szenker, E., D. Ray-Gallet, and G. Almouzni, The double face of the histone variant H3.3. Cell Res, 2011. 21(3): p. 421-434. 47. Ahmad, K. and S. Henikoff, The Histone Variant H3.3 Marks Active Chromatin by Replication-Independent Nucleosome Assembly. Molecular Cell, 2002. 9(6): p. 1191-1200. 48. Huang, J., et al., RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol, 2009. 11(5): p. 592-603. 49. McKittrick, E., et al., Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(6): p. 1525-1530. 50. Koelle, M.R., et al., The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell, 1991. 67(1): p. 59-77. 51. Govorukhina, N.I., et al., Sample preparation of human serum for the analysis of tumor markers. Comparison of different approaches for albumin and gamma-globulin depletion. J Chromatogr A, 2003. 1009(1-2): p. 171-8. 52. Adkins, J.N., et al., Toward a Human Blood Serum Proteome: Analysis By Multidimensional Separation Coupled With Mass Spectrometry. Molecular Cellular Proteomics, 2002. 1(12): p. 947-955. 53. Merrell, K., et al., Analysis of Low-Abundance, Low-Molecular-Weight Serum Proteins Using Mass Spectrometry. Journal of Biomolecular Techniques : JBT, 2004. 15(4): p. 238-248. 54. Cook, Adam J.L., et al., A Specific Function for the Histone Chaperone NASP to Fine-Tune a Reservoir of Soluble H3-H4 in the Histone Supply Chain. Molecular Cell, 2011. 44(6): p. 918-927. 55. Schwartz, B.E. and K. Ahmad, Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Development, 2005. 19(7): p. 804-814. 56. Zhou, B.O., et al., Histone H4 Lysine 12 Acetylation Regulates Telomeric Heterochromatin Plasticity in Saccharomyces cerevisiae. PLoS Genetics, 2011. 7(1): p. e1001272. 57. Casas-Delucchi, C.S., et al., Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin. Nucleic Acids Research, 2012. 40(1): p. 159-169. 58. Rogge, G.A. and M.A. Wood, The Role of Histone Acetylation in Cocaine-Induced Neural Plasticity and Behavior. Neuropsychopharmacology, 2013. 38(1): p. 94-110. 59. Ferrari, R., et al., Reorganization of the host epigenome by a viral oncogene. Genome Res, 2012. 22(7): p. 1212-21. 60. D’Costa, A., et al., The Drosophila ramshackle gene encodes a chromatin-associated protein required for cell morphology in the developing eye. Mechanisms of Development, 2006. 123(8): p. 591-604. 61. Hödl, M. and K. Basler, Transcription in the Absence of Histone H3.3. Current Biology, 2009. 19(14): p. 1221-1226. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53776 | - |
| dc.description.abstract | 真核生物發育過程中,染色質上基因之表現會精密地受到表觀遺傳調控,而這樣的調控會導致染色質狀態在異染色質及真染色質間動態的改變,藉以調控基因轉錄。過去研究顯示組蛋白變異體H3.3置入染色質,以及核小體中組蛋白之後轉錄修飾的變動,在染色質狀態之動態調控上扮演著重要的角色。在細胞中,組蛋白修飾可以透過所謂的表觀遺傳編輯酵素,例如組蛋白乙醯基轉移酶(histone acetyltransferases,HATs) 作為編寫者;或者例如組蛋白去乙醯基酶(histone deacetylase,HDACs)作為抹除者。另一方面尚有所謂的表觀遺傳讀取蛋白,可藉由其所具有之特別的domain,像是bromodomain,來讀取染色質上特定的組蛋白修飾,並且吸引其他具有酵素催化活性之蛋白來改變組蛋白之後轉譯修飾。目前有很多帶有表觀遺傳讀取domain的蛋白被研究,尤其是具有bromodomain的蛋白們,以及其在辨識乙醯基化組蛋白及影響基因轉錄的特性。而在我們實驗室我們研究一個名為dBRWD3(Drosophila bromodomain and WD40 repeat domain containing 3)的蛋白,是一個具有兩個bromodomain的蛋白。dBRWD3是人類3個BRWD家族蛋白,BRWD3、PHIP (Pleckstrin homology domain interacting protein)及BRWD1在果蠅中唯一的同源基因(homologous gene)。BRWD3在演化上自果蠅到人類都居有高度的演化保留性,並且在文獻報導中指出BRWD3為人類X染色體連結智能發展遲緩 (X-link intellectual disability)疾病之相關蛋白。我們著重於研究dBRWD3是因為其所具有的兩個表觀遺傳讀取domain,分別是位在 N-terminal 的WD40 repeat domain 以及位在 C-terminal 之兩個前後排列的bromodomains。dBRWD3也被報導指出會做為受質受體蛋白,參與在DDB1-CUL4-ROC1 所組成之 E3 泛素酶複合體中。我們亦發現dBRWD3會負向調控組蛋白H3之變異體H3.3置入於染色質,而當dBRWD3突變時會導致組蛋白修飾之表現程度受影,暗示著dBRWD3在表觀遺傳調控上具有多樣化角色。考慮到dBRWD3所具有的兩個前後排列之bromodomains,我們好奇dBRWD3是否能藉由bromodomains來讀取特殊的組蛋白修飾,進而間接改變組蛋白後轉譯修飾來動態調控染色質狀態及基因轉錄程度。 我們利用histone peptide array analysis,藉由體外試驗許多不同的組蛋白修飾來找出dBRWD3的兩個bromodomains個別之專一性辨認位點:bromodomain I會辨識H4K12ac及H4K16ac,而bromodomain II 則會辨識H2AK9ac、H2AK13ac、H3K18ac、 H3K14ac、H4K5ac以及H4K8ac。外我們也確認了在dBRWD3突變下染色質上組蛋白變異體H3.3的置入,以及轉錄相關組蛋白標記,例如H3K4me1 and H3K9me2表現程度的改變,暗示著dBRWD3在基因轉錄調控上扮演重要角。最後我們利用免疫沉澱純化出帶有Flag標記之dBRWD3,透過質譜分析來找出在表觀遺傳調控上會與之有交互作用的相關蛋白。我們好奇dBRWD3在表觀遺傳調控對基因表現調控上的角色,而我們的發現對於dBRWD3如何透過間接改變染色質狀態來調控基因轉錄提供新的線索。 | zh_TW |
| dc.description.abstract | In eukaryotes development, the gene expression on chromatin can be accurately managed through epigenetic regulation, and such regulation can change chromatin status from hetrochromatin to euchromatin or vice versa to turn on or turn off gene transcription. The deposition of histone variant H3.3 and changes of the post-translational modification (PTM) on histones of nucleosome have been implicated in regulating the chromatin status. In cells, histone modification can be directly regulated through epigenetic-editor enzymes, for instance, histone acetyltransferases (HATs) as the writer, or histone deacetylase (HDACs) as the eraser. On the other hand, the epigenetic-reader proteins recognize specific histone modifications on chromatin through specific domain such as bromodomain, and recruit other modifier proteins with enzymatic activity to modify the PTM of hisotnes. Lots of these epigenetic-reader domain containing proteins have been studied, especially the bromodomain containing proteins due to their recognition on acetylated histones and gene transcriptional regulation. In our lab, the protein named dBRWD3 (Drosophila bromodomain and WD40 repeat domain containing 3) is a double bromodomain-containg protein. dBRWD3 is the homologue of 3 human BRWD family proteins, the BRWD3, PHIP (pleckstrin homology domain interacting protein), and BRWD1. BRWD3 is evolutionarily conserved from Drosophila to human and has been reported as a human X-link intellectual disability-associated protein. We focused on dBRWD3 owing to its two epigenetic-reader domains, the N-terminal WD40 repeat domain and the C-terminal tandem bromodomains. dBRWD3 was reported as a substrate receptor in DDB1-CUL4-ROC1-based E3 ubiquitin ligase complexes. In our lab, we previously discovered that dBRWD3 regulates gene expression through a negative regulation of histone H3 variant H3.3 deposition on chromatin, and we uncovered that mutations in dBRWD3 change the expression levels of many histone modifications, implying a versatile role of dBRWD3 in epigenetic regulation. Considering its tandem bromodomains, we wondered whether dBRWD3 can recognize specific histone modification by its bromodomains, and indirectly edit the PTM of histone to dynamically regulate chromatin status and gene expression. We performed histone peptide array analysis, examining the binding of the two bromodomains with various histone modifications in vitro. The histone peptide array analysis revealed the specific recognitions of bromodomain I and II respectively. Bromodomain I can recognize H4K12ac and H4K16ac, and bromodomain II can recognize H2AK9ac, H2AK13ac, H3K18ac, H3K14ac, H4K5ac and H4K8ac. In addition, we also confirmed that under dBRWD3 mutation, the chromatin incorporation of histone variant H3.3 increased. The levels of transcriptional related histone markers, such as H3K4me1 and H3K9me2 changed in dBRWD3 mutant cells, implying the critical roles of dBRWD3 in gene expression. Finally, we performed immunoprecipitation to purify Flag-tagged dBRWD3 for mass spectrometry analysis in order to identify proteins associated with dBRWD3 in epigenetic regulation. We investigate the role of dBRWD3 in epigenetic regulation, and our findings provide new insights to how dBRWD3 regulates gene expression by indirectly editing chromatin status. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:29:28Z (GMT). No. of bitstreams: 1 ntu-104-R02448014-1.pdf: 35833490 bytes, checksum: 1f2d8dc4893d60058fff1c2db77ec6ae (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Abstrate……………………………………………………………………………………………………1
中文摘要 ……………………………………………………………………………………………………3 第一章 緒論………………………………………………………………………………………………5 第二章 活體外分析探討dBRWD3所具有的兩個 bromodomain分別可辨認之特定組蛋白修飾…………………………………………………………………………………12 第三章 利用免疫沉澱方式純化dBRWD3及質譜分析與齊聚交互作用之蛋白質複合體成員組成…………………………………………………………………………………………………24 第四章 探討dBRWD3在表觀遺傳調控上可能透過的作用方式……….……29 討 論 …………………..…………………………………………………………...37 實驗材料與方法……………………………………………………………………….43 文獻參考……………………………………………………………………………….51 附 圖……………………………………………………………………………..…….54 附 表……………………………………………………………………………...……88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 組蛋白修飾 | zh_TW |
| dc.subject | dBRWD3 | zh_TW |
| dc.subject | 表關遺傳調控 | zh_TW |
| dc.subject | 組蛋白修飾微陣列分析 | zh_TW |
| dc.subject | histone modification | en |
| dc.subject | dBRWD3 | en |
| dc.subject | epigenetic regulation | en |
| dc.subject | modified histone peptide array analysis | en |
| dc.title | 探討dBRWD3在表觀遺傳調控上之角色 | zh_TW |
| dc.title | The Role of dBRWD3 in Epigenetic Regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 阮麗蓉(Li-Jung Juan),許邦弘(Pang-Hung Hsu) | |
| dc.subject.keyword | dBRWD3,表關遺傳調控,組蛋白修飾微陣列分析,組蛋白修飾, | zh_TW |
| dc.subject.keyword | dBRWD3,epigenetic regulation,modified histone peptide array analysis,histone modification, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 34.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
