Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金洛仁(Laurent Zimmerli)
dc.contributor.authorJingsong Zhangen
dc.contributor.author張靜松zh_TW
dc.date.accessioned2021-06-16T02:29:13Z-
dc.date.available2020-08-01
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-07-31
dc.identifier.citationAcosta, I.F., Gasperini, D., Chetelat, A., Stolz, S., Santuari, L., and Farmer, E.E. (2013). Role of NINJA in root jasmonate signaling. Proc. Natl. Acad. Sci. USA 110: 15473-15478.
Bethke, G., Unthan, T., Uhrig, J.F., Poschl, Y., Gust, A.A., Scheel, D., and Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc. Natl. Acad. Sci. USA 106: 8067-8072.
Broekaert, W.F., J, V.A.N.P., Leyns, F., Joos, H., and Peumans, W.J. (1989). A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245: 1100-1102.
Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X., and Zhu, T. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559-574.
Cheng, M.C., Liao, P.M., Kuo, W.W., and Lin, T.P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162: 1566-1582.
Cuellar Perez, A., Nagels Durand, A., Vanden Bossche, R., De Clercq, R., Persiau, G., Van Wees, S.C., Pieterse, C.M., Gevaert, K., De Jaeger, G., Goossens, A., and Pauwels, L. (2014). The non-JAZ TIFY protein TIFY8 from Arabidopsis thaliana is a transcriptional repressor. PLoS One 9: e84891.
Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G.D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13: 414-430.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225-2245.
Fan, F., and Wood, K.V. (2007). Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol. 5: 127-136.
Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393-404.
Gaston, K., and Jayaraman, P.S. (2003). Transcriptional repression in eukaryotes: repressors and repression mechanisms. Cell Mol. Life Sci. 60: 721-741.
Hiratsu, K., Matsui, K., Koyama, T., and Ohme-Takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34: 733-739.
Howe, G.A. (2010). Ubiquitin Ligase-Coupled Receptors Extend Their Reach to Jasmonate. Plant Physiol. 154: 471-474.
Huang, P.Y., Yeh, Y.H., Liu, A.C., Cheng, C.P., and Zimmerli, L. (2014). The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J. 79: 243-255.
Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 50: 970-975.
Kagale, S., and Rozwadowski, K. (2011). EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6: 141-146.
Kagale, S., Links, M.G., and Rozwadowski, K. (2010). Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol. 152: 1109-1134.
Licausi, F., Ohme-Takagi, M., and Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 199: 639-649.
Luo, M., Liu, X., Singh, P., Cui, Y., Zimmerli, L., and Wu, K. (2012). Chromatin modifications and remodeling in plant abiotic stress responses. Biochim. Biophys. Acta. 1819: 129-136.
Maruyama, Y., Yamoto, N., Suzuki, Y., Chiba, Y., Yamazaki, K., Sato, T., and Yamaguchi, J. (2013). The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci. 213: 79-87.
McGrath, K.C., Dombrecht, B., Manners, J.M., Schenk, P.M., Edgar, C.I., Maclean, D.J., Scheible, W.R., Udvardi, M.K., and Kazan, K. (2005). Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 139: 949-959.
Meng, X., Xu, J., He, Y., Yang, K.Y., Mordorski, B., Liu, Y., and Zhang, S. (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25: 1126-1142.
Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432.
Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182.
Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959-1968.
Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Perez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., Garcia-Casado, G., Witters, E., Inze, D., Long, J.A., De Jaeger, G., Solano, R., and Goossens, A. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788-791.
Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110.
Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121-1133.
Song, C.P., and Galbraith, D.W. (2006). AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol. Biol. 60: 241-257.
Song, C.P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P., and Zhu, J.K. (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17: 2384-2396.
Song, S.S., Huang, H., Gao, H., Wang, J.J., Wu, D.W., Liu, X.L., Yang, S.H., Zhai, Q.Z., Li, C.Y., Qi, T.C., and Xie, D.X. (2014). Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis. Plant Cell 26: 263-279.
Tao, Q., Guo, D., Wei, B., Zhang, F., Pang, C., Jiang, H., Zhang, J., Wei, T., Gu, H., Qu, L.J., and Qin, G. (2013). The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. Plant Cell 25: 421-437.
Tsutsui, T., Kato, W., Asada, Y., Sako, K., Sato, T., Sonoda, Y., Kidokoro, S., Yamaguchi-Shinozaki, K., Tamaoki, M., Arakawa, K., Ichikawa, T., Nakazawa, M., Seki, M., Shinozaki, K., Matsui, M., Ikeda, A., and Yamaguchi, J. (2009). DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J. Plant Res. 122: 633-643.
Van Verk, M.C., Gatz, C., and Linthorst, H.J.M. (2009). Transcriptional Regulation of Plant Defense Responses. In Advances in Botanical Research, L.C.V. Loon, ed (Academic Press), pp. 397-438.
Wehner, N., Hartmann, L., Ehlert, A., Bottner, S., Onate-Sanchez, L., and Droge-Laser, W. (2011). High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. Plant J. 68: 560-569.
Weiste, C., and Droge-Laser, W. (2014). The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. Nat. Commun. 5: 3883.
Wu, C.C., Singh, P., Chen, M.C., and Zimmerli, L. (2010). L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J. Exp. Bot. 61: 995-1002.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565-1572.
Zarei, A., Korbes, A.P., Younessi, P., Montiel, G., Champion, A., and Memelink, J. (2011). Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol. Biol. 75: 321-331.
Zhai, Q.Z., Yan, L.H., Tan, D., Chen, R., Sun, J.Q., Gao, L.Y., Dong, M.Q., Wang, Y.C., and Li, C.Y. (2013). Phosphorylation-Coupled Proteolysis of the Transcription Factor MYC2 Is Important for Jasmonate-Signaled Plant Immunity. PLoS Genet. 9.
Zhang, H., Jin, J., Tang, L., Zhao, Y., Gu, X., Gao, G., and Luo, J. (2011). PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res. 39: D1114-1117.
Zhang, X.R., Henriques, R., Lin, S.S., Niu, Q.W., and Chua, N.H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1: 641-646.
Zimmerli, L., Metraux, J.P., and Mauch-Mani, B. (2001). beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126: 517-523.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53765-
dc.description.abstractEthylene response factors (ERFs)的轉錄因子已經被證實參與在阿拉伯芥(Arabidopsis thaliana)的生長發育以及防禦反應中。在本研究中,我們發現了一個未被報道的ERF轉錄因子19。它是一個可能結合在啟動子區的GCC序列上的轉錄因子,並且能夠負調控阿拉伯芥對於灰黴菌的防禦反應。大量表現ERF19會降低茉莉酸防禦反應的標誌基因PDF1.2a和PR3的基因表現,并使植株對於灰黴菌更加感病。儘管在原生質體轉化實驗(protoplast transactivation assay)中發現, ERF19是轉錄上的激活因子,但是在生物體內的bimolecular fluorescence complementation實驗和co-immunoprecipitation實驗結果表明ERF19和NINJA抑制子以及组蛋白脱乙酰酶HDA6,HDA19複合體交互作用。此外原生質體轉化實驗表明ERF19的轉錄活性被NINJA顯著性的抑制了。因此,我們猜測ERF19通過與NINJA抑制子複合體交互作用負調控茉莉酸反應。我們的實驗結果闡述了ERF19介導的一個新的轉錄抑制機制。zh_TW
dc.description.abstractArabidopsis ethylene response factors (ERFs) are known to be involved in various developmental and defense processes. Here, we report novel mechanisms of ERF19, a potential GCC box binding transcription factor, to negatively regulate defense response against the fungal pathogen Botrytis cinerea. Over-expression of ERF19 leads to increased Arabidopsis susceptibility to B. cinerea via repressing the induction of jasmonic acid (JA) defense marker genes PDF1.2a and PR3. Although ERF19 acted as activator of transcription in protoplast transactivation assay (PTA), in vivo bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays revealed that ERF19 associates with the transcriptional repressor NINJA and histone deacetylases HDA6 and HDA19. Moreover, ERF19 activity were significantly repressed by NINJA in PTA assay. We proposed that ERF19 recruits the NINJA repressor complex to negatively regulate JA-mediated defense responses. Our results provide new insights into the mechanisms of ERF19-mediated transcriptional repression.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:29:13Z (GMT). No. of bitstreams: 1
ntu-104-R02b42031-1.pdf: 3950482 bytes, checksum: 3d461e65939f3e165084424b60f61b02 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iii
Introduction 5
Material and Methods 10
Biological Materials and Growth Conditions. 10
Disease assays. 10
Transgenic plants. 11
qRT-PCR. 11
Protoplast transactivation assay. 12
Co-immunoprecipitation Assay in Arabidopsis Protoplast. 12
Bimolecular Fluorescence Complementation Assay in Arabidopsis Protoplast. 13
Chemical Treatments. 14
Protein Gel Blotting Analysis 14
Root length measurements. 15
Statistical analysis. 15
Results 16
Generation of ERF19 inducible over-expression and RNAi lines. 16
ERF19 acts as an activator of transcription. 16
ERF19 associates with HDA6, HDA19, and NINJA in vivo. 17
NINJA, but not HDA6 and HDA19, represses the activation of ERF19. 18
A role for NINJA in disease resistance. 19
Chitin treatment causes ERF19 degradation and this degradation is dependent on 26S proteasome. 19
Characterization of erf20 mutant and ERF20 over-expression lines. 20
Discussion 22
Conclusion and future perspectives 24
Figures 26
Figure 1: Introduction of ERF19 with GFP into the pMDC7 binary vector. 26
Figure 2: Introduction of Micro ERF19 into the pMDC7 binary vector 27
Figure 3: Introduction of NINJA, HDA6, and HDA19 into the p35SN vector and ERF19 into the p35S-GAL4DB vector. 28
Figure 4: ERF19 acts as an activator of transcription. 29
Figure 5: ERF19 associates with HDA6, HDA19, and NINJA when analyzed by the BiFC assay in Arabidopsis protoplasts. 31
Figure 6: ERF19 associates with HDA6, HDA19, and NINJA when tested by Co-IP in Arabidopsis protoplasts. 32
Figure 7: NINJA, but not HDA6 and HDA19, represses the activation of ERF19. 33
Figure 8: Disease resistance of ninja RNAi and NINJA OE lines to B. cinerea. 35
Figure 9: Degradation of ERF19 by chitin treatment. 36
Figure 10: ERF19 is subjected to proteasome-mediated degradation. 37
Figure 11: The identification of erf20 mutant and overexpression line. 38
Figure 12: ERF20 associates with NINJA and NHDA19 when analyzed by BiFC in Arabidopsis protoplasts. 40
Figure 13: Reduced root growth in untreated erf20 mutant line 41
Figure 14: Alignment of ERF19 and ERF20 protein sequences 42
Figure 15:Proposed model 43
Tables 44
Table 1: Primers for inducible erf19 RNAi line construct 44
Table 2: Primers for BiFC assay construct 44
Table 3: Primers for CoIP assay construct 45
Table 4: Primers for PTA assay construct 46
Table 5: Primers for qRT-PCR 46
References 47
dc.language.isoen
dc.subjectNINJA抑制子zh_TW
dc.subjectERF轉錄因子19zh_TW
dc.subject灰黴菌zh_TW
dc.subject茉莉酸反應zh_TW
dc.subjectERF19en
dc.subjectNINJAen
dc.subjectJA-mediated responsesen
dc.subjectBotrytis cinereaen
dc.title"乙烯反應因子19與NINJA抑制子複合體交互作用,負調控阿拉伯芥對於灰黴菌的防禦反應"zh_TW
dc.titleThe ethylene response factor ERF19 associates with the NINJA repressor complex and negatively regulates Arabidopsis defense responses against Botrytis cinereaen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳克強,林?標
dc.subject.keywordERF轉錄因子19,灰黴菌,茉莉酸反應,NINJA抑制子,zh_TW
dc.subject.keywordERF19,Botrytis cinerea,JA-mediated responses,NINJA,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2015-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved