請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53764完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
| dc.contributor.author | Tai-Yuan Huang | en |
| dc.contributor.author | 黃泰元 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:29:12Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-31 | |
| dc.identifier.citation | Acharya, B.R., and Assmann, S.M. (2009). Hormone interactions in stomatal function. Plant Mol. Biol. 69: 451-462. Boudsocq, M., and Sheen, J. (2013). CDPKs in immune and stress signaling. Trends Plant Sci. 18: 30-40. Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., and Sheen, J. (2010). Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464: 418-422. Chen, C.W., Panzeri, D., Yeh, Y.H., Kadota, Y., Huang, P.Y., Tao, C.N., Roux, M., Chien, S.C., Chin, T.C., Chu, P.W., Zipfel, C., and Zimmerli, L. (2014). The Arabidopsis malectin-like leucine-rich repeat receptor-like kinase IOS1 associates with the pattern recognition receptors FLS2 and EFR and is critical for priming of pattern-triggered immunity. Plant Cell 26: 3201-3219. Chen, X.-Y., and Kim, J.-Y. (2014). Callose synthesis in higher plants. Plant Signal Behav. 4: 489-492. Chinchilla, D., Shan, L., He, P., de Vries, S., and Kemmerling, B. (2009). One for all: the receptor-associated kinase BAK1. Trends Plant Sci. 14: 535-541. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. Clay, N.K., Adio, A.M., Denoux, C., Jander, G., and Ausubel, F.M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323: 95-101. Desclos-Theveniau, M., Arnaud, D., Huang, T.Y., Lin, G.J., Chen, W.Y., Lin, Y.C., and Zimmerli, L. (2012). The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog. 8: e1002513. Desikan, R., Horak, J., Chaban, C., Mira-Rodado, V., Witthoft, J., Elgass, K., Grefen, C., Cheung, M.K., Meixner, A.J., Hooley, R., Neill, S.J., Hancock, J.T., and Harter, K. (2008). The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PloS one 3: e2491. Galletti, R., Ferrari, S., and De Lorenzo, G. (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant physiol. 157: 804-814. Gomez-Gomez, L. (2001). Both the Extracellular Leucine-Rich Repeat Domain and the Kinase Activity of FLS2 Are Required for Flagellin Binding and Signaling in Arabidopsis. Plant Cell 13: 1155-1163. Hok, S., Allasia, V., Andrio, E., Naessens, E., Ribes, E., Panabieres, F., Attard, A., Ris, N., Clement, M., Barlet, X., Marco, Y., Grill, E., Eichmann, R., Weis, C., Huckelhoven, R., Ammon, A., Ludwig-Muller, J., Voll, L.M., and Keller, H. (2014). The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. Plant physiol. 166: 1506-1518. Kim, X.-Y.C.a.J.-Y. (2009). Callose synthesis in higher plants. Plant Signal Behav. 6: 489-492. Klusener, B., Young, J.J., Murata, Y., Allen, G.J., Mori, I.C., Hugouvieux, V., and Schroeder, J.I. (2002). Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant physiol. 130: 2152-2163. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16: 3496-3507. Kwaaitaal, M., Huisman, R., Maintz, J., Reinstadler, A., and Panstruga, R. (2011). Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. Biochem. J. 440: 355-365. Lehti-Shiu, M.D., Zou, C., Hanada, K., and Shiu, S.H. (2009). Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant physiol. 150: 12-26. Melotto, M., Underwood, W., and He, S.Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46: 101-122. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980. Mersmann, S., Bourdais, G., Rietz, S., and Robatzek, S. (2010). Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant physiol. 154: 391-400. Monaghan, J., and Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15: 349-357. Morillo, S.A., and Tax, F.E. (2006). Functional analysis of receptor-like kinases in monocots and dicots. Curr. Opin. Plant Biol. 9: 460-469. Nuhse, T.S., Bottrill, A.R., Jones, A.M., and Peck, S.C. (2007). Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51: 931-940. Nurnberger, T., and Kemmerling, B. (2006). Receptor protein kinases--pattern recognition receptors in plant immunity. Trends Plant Sci. 11: 519-522. O'Brien, J.A., Daudi, A., Finch, P., Butt, V.S., Whitelegge, J.P., Souda, P., Ausubel, F.M., and Bolwell, G.P. (2012). A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant physiol. 158: 2013-2027. Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F.G., Tor, M., de Vries, S., and Zipfel, C. (2011). The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23: 2440-2455. Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant physiol. 132: 530-543. Tena, G., Boudsocq, M., and Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14: 519-529. Thomma, B.P., Nurnberger, T., and Joosten, M.H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23: 4-15. Torres, M.A., Jones, J.D., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant physiol. 141: 373-378. Tsuda, K., and Katagiri, F. (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13: 459-465. Underwood, W., Melotto, M., and He, S.Y. (2007). Role of plant stomata in bacterial invasion. Cell Microbiol. 9: 1621-1629. Xiao, F., He, P., Abramovitch, R.B., Dawson, J.E., Nicholson, L.K., Sheen, J., and Martin, G.B. (2007). The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. The Plant J. 52: 595-614. Yeh, Y.-H., Chang, Y.-H., Huang, P.-Y., Huang, J.-B., and Zimmerli, L. (2015). Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front. Plant Sci. 6: 322 Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., and Durner, J. (2004). Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. USA 101: 15811-15816. Zeng, W., Melotto, M., and He, S.Y. (2010). Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. biotechnol. 21: 599-603. Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., Zou, Y., Long, C., Lan, L., Chai, J., Chen, S., Tang, X., and Zhou, J.M. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1: 175-185. Zhang, W., He, S.Y., and Assmann, S.M. (2008). The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. The Plant J. 56: 984-996. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53764 | - |
| dc.description.abstract | 多亮胺酸重複類受體激酶(LRR-RLKs)是屬於類受體激酶家族的一員,而這個家族在植物對抗生物逆境及非生物逆境的過程中扮演很重要的角色。而本篇文章中我們所要探討的基因:阿拉伯芥類Malectin蛋白/類多亮胺酸重複類受體激酶LRR50是一個被認為參與在阿拉伯芥對抗微生物的基因。在先前的研究中,LRR50被發現會受到細菌性斑點病病原菌Pseudomonas syringae pv tomato (Pst) DC3000的誘導而提高其基因表現量。然而,在突變掉LRR50的突變株中則會使阿拉伯界對於Pst. DC3000的感染變得較為感病。突變掉LRR50後亦會使得阿拉伯芥對於病原菌變得更加感病,而這些突變後產生缺陷的徵狀恰恰好與阿拉伯芥某些PAMP誘發免疫反應(PTI)相符。而其中比較值得注意的是在LRR50突變株中,受到Pst DC3000誘導所聚集的葡萄肽聚醣(callose)與野生型植株相比明顯下降,且氣孔的關閉也變得較不明顯。值得一提的是在經過離層酸(ABA)處理之後LRR50突變株的氣孔並不會受到ABA誘導而關閉,這個現象指出LRR50可能在ABA所誘導的氣孔關閉路徑中扮演一個相當重要的角色。為了更進一步的研究LRR50的功能,我們建立了此基因的回復株以及大量表現株,並觀察其受到Pst DC3000感染之後感染程度的差異。從結果可以得知:回復株的感染程度可以回復到與野生型相仿的程度,而LRR50的大量表現株則變得更加抗病。這些結果都告訴我們LRR50會參與在PAMP誘發免疫反應(PTI)中,且參與在ABA所調控的氣孔關閉路徑中。 | zh_TW |
| dc.description.abstract | Leucine-rich repeat receptor like kinases (LRR-RLKs) belong to a RLK family that plays a role in both biotic and abiotic stress resistance. The gene Leucine-rich repeat receptor like kinase 50 (LRR50) is thought to participate in Arabidopsis thaliana defense to microbial pathogens. In a previous study, LRR50 was shown to be up-regulated during infection by virulent Pseudomonas syringae pv tomato (Pst) DC3000 bacteria. In addition, a lrr50 knock-out mutant demonstrated an enhanced susceptibility phenotype to Pst DC3000. The lrr50 mutant increased susceptibility phenotype was correlated with some defects in the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response. Notably, reduced callose depositions and weakened stomatal immunity were observed in lrr50 after Pst DC3000 inoculation. Stomata of the lrr50 mutant did not close in response to abscisic acid (ABA) treatment suggesting a role for LRR50 in the ABA-mediated stomatal closure. To further analyze the function of LRR50, complementary and overexpression lines were generated and inoculated with Pst DC3000. Complementary lines resistance levels to Pst DC3000 infection was back to wild type levels, while LRR50 overexpression lines were more resistant to virulent bacteria. Enhanced resistance was correlated with a reinforced PTI response. Our data reveal that LRR50 play a role in the PTI response, and in the ABA-mediated stomatal closer in Arabidopsis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:29:12Z (GMT). No. of bitstreams: 1 ntu-104-R02b42001-1.pdf: 3605759 bytes, checksum: 2b5f53fb6a57fb23e8d83c946ce85b83 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents 1 Abstract 4 Introduction 7 Plant immunity against pathogenic microbes. 7 PTI activating stomata immunity. 8 Leucine-rich repeat receptor like kinases play an important role in plant immunity. 9 LRR50 play a role in PTI response. 10 Material and Methods 11 Biological materials and growth conditions 11 Construction of transgenic lines 11 Oxidative Burst Assay 13 Stomatal Movement Measurement 13 RNA Extraction and Gene Expression Analysis 14 Callose Staining 15 MAP Kinase Assay 15 Results 16 LRR50 overexpression lines screening. 16 LRR50 overexpression lines demonstrated enhanced resistance to hemi-biotrophic bacteria. 16 LRR50 modulates PTI-mediated callose deposition 17 WT levels of reactive oxygen species production upon flg22 perception in LRR50 overexpression lines. 18 LRR50 overexpression lines may not play a role in regulating PTI maker gene expression. 18 LRR50 does not participate in MPK3/6 signaling in response to flg22 treatment. 18 LRR50 modulates stomatal innate immunity upon Pst DC3000 infection. 19 LRR50 plays an important role in hormone induced stomata closure. 20 Discussion 21 LRR50 participates in the PTI response. 21 LRR50 is involved in ABA-mediated regulation of stomatal closure. 22 Conclusion and future perspectives 24 Figure 26 Figure 1: The full-length genomic LRR50 was introduced into pG103 binary vector. 26 Figure 2 : Protein expression level of LRR50 overexpression lines. 27 Figure 3: Disease symptoms of Pst DC3000 infected Col-0 and LRR50 overexpression lines. 28 Figure 4: Bacterial titers in Arabidopsis after Pst DC3000 dip-inoculation. 29 Figure 5 : Visualizations and quantifications of callose deposits upon PTI activation. 30 Figure 6 : ROS production after flg22 treatment. 32 Figure 7 : Analyses of PTI-responsive genes FRK1 and CYP81F2 after flg22 treatment. 33 Figure 8 : MAPK activation after elicitation with flg22. 34 Figure 9 : Stomatal aperture after Pst DC3000 inoculation. 35 Figure 10 : Stomatal response to flg22. 36 Figure 11 : Stomatal response to ABA. 37 Figure 12 : Stomatal response to SA. 38 References 40 | |
| dc.language.iso | en | |
| dc.subject | 類受體蛋白激? | zh_TW |
| dc.subject | PAMP 誘發免疫反應 | zh_TW |
| dc.subject | 細菌性斑點病病原菌 | zh_TW |
| dc.subject | 氣孔關閉 | zh_TW |
| dc.subject | malectin-like 多亮氨酸重複模組之受體蛋白激? | zh_TW |
| dc.subject | receptor-like kinases (RLKs) | en |
| dc.subject | PAMP-triggered immunity (PTI) | en |
| dc.subject | Pseudomonas syringae | en |
| dc.subject | malectin-like/leucine-rich repeat protein kinase | en |
| dc.subject | stomatal closure | en |
| dc.title | LRR50參與在保衛細胞的移動且其大量表現株會增強植物的防禦反應 | zh_TW |
| dc.title | LRR50 is required for guard cell movement and its overexpression enhances plant defense | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳克強,林讚標 | |
| dc.subject.keyword | malectin-like 多亮氨酸重複模組之受體蛋白激?,細菌性斑點病病原菌,PAMP 誘發免疫反應,類受體蛋白激?,氣孔關閉, | zh_TW |
| dc.subject.keyword | malectin-like/leucine-rich repeat protein kinase,Pseudomonas syringae,PAMP-triggered immunity (PTI),receptor-like kinases (RLKs),stomatal closure, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
