Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53753
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔源成(YuanCheng Gung)
dc.contributor.authorXiaojun Zhangen
dc.contributor.author張曉駿zh_TW
dc.date.accessioned2021-06-16T02:28:58Z-
dc.date.available2015-08-03
dc.date.copyright2015-08-03
dc.date.issued2015
dc.date.submitted2015-08-03
dc.identifier.citationAngelier, J., Lee, J. C., Chu, H. T., Hu, J. C., Lu, C. Y., Chan, Y. C., & Yi-Ben, T. (2001). Le séisme de Chichi (1999) et sa place dans l'orogène de Taiwan. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(1), 5-21.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P. & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239-1260.
Boschi, L., Weemstra, C., Verbeke, J., Ekström, G., Zunino, A., & Giardini, D. (2013). On measuring surface wave phase velocity from station–station cross-correlation of ambient signal. Geophysical Journal International, 192(1), 346-358.
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126-130.
Calkins, J. A., Abers, G. A., Ekstroem, G., Creager, K. C., & Rondenay, S. (2011). Shallow structure of the Cascadia subduction zone beneath western Washington from spectral ambient noise correlation. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B7).
Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549.
Cheng, X., Niu, F., & Wang, B. (2010). Coseismic velocity change in the rupture zone of the 2008 Mw 7.9 Wenchuan earthquake observed from ambient seismic noise. Bulletin of the Seismological Society of America, 100(5B), 2539-2550.
Chiao, L. Y., & Liang, W. T. (2003). Multiresolution parameterization for geophysical inverse problems. Geophysics, 68(1), 199-209.
Chiao, L. Y., & Kuo, B. Y. (2001). Multiscale seismic tomography. Geophysical Journal International, 145(2), 517-527.
Cho, K. H., Herrmann, R. B., Ammon, C. J., & Lee, K. (2007). Imaging the upper crust of the Korean Peninsula by surface-wave tomography. Bulletin of the Seismological Society of America, 97(1B), 198-207.
Ekström, G., Abers, G. A., & Webb, S. C. (2009). Determination of surface‐wave phase velocities across USArray from noise and Aki's spectral formulation. Geophysical Research Letters, 36(18).
Gudmundsson, O., Khan, A., & Voss, P. (2007). Rayleigh‐wave group‐velocity of the Icelandic crust from correlation of ambient seismic noise. Geophysical Research Letters, 34(14).
Huang, T. Y., Gung, Y., Liang, W. T., Chiao, L. Y., & Teng, L. S. (2012). Broad‐band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies. Geophysical Research Letters, 39(5).
Huang, T. Y., Chen, Y. N., Gung, Y., Liang, W. T., Chiao, L. Y., & Lee, S. J. Multi-scale Isotropic/anisotropic tomography of Taiwan using seismic ambient noises.
Lawrence, J. F., & Prieto, G. A. (2011). Attenuation tomography of the western United States from ambient seismic noise. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B6).
Lin, F. C., Ritzwoller, M. H., & Shapiro, N. M. (2006). Is ambient noise tomography across ocean basins possible?. Geophysical research letters, 33(14).
Lin, F. C., Ritzwoller, M. H., Townend, J., Bannister, S., & Savage, M. K. (2007). Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International, 170(2), 649-666.
Meyerholtz, K. A., Pavlis, G. L., & Szpakowski, S. A. (1989). Convolutional quelling in seismic tomography. Geophysics, 54(5), 570-580.
Moschetti, M. P., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(8).
Nakata, N., & Snieder, R. (2012). Time‐lapse change in anisotropy in Japan's near surface after the 2011 Tohoku‐Oki earthquake. Geophysical Research Letters, 39(11).
Obermann, A., Planès, T., Larose, E., & Campillo, M. (2013). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. Journal of Geophysical Research: Solid Earth, 118(12), 6285-6294.
Poli, P., Campillo, M., & Pedersen, H. (2012). Body-wave imaging of earth’s mantle discontinuities from ambient seismic noise. Science, 338(6110), 1063-1065.
Roux, P., Sabra, K. G., Gerstoft, P., Kuperman, W. A., & Fehler, M. C. (2005). P‐waves from cross‐correlation of seismic noise. Geophysical Research Letters, 32(19).
Seats, K. J., Lawrence, J. F., & Prieto, G. A. (2012). Improved ambient noise correlation functions using Welch’s method. Geophysical Journal International, 188(2), 513-523.
Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618.
Snieder, R. (2004). Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4), 046610.
Stehly, L., Campillo, M., & Shapiro, N. M. (2006). A study of the seismic noise from its long‐range correlation properties. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B10).
Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and computational harmonic analysis, 3(2), 186-200.
Tsai, V. C., & Moschetti, M. P. (2010). An explicit relationship between time‐domain noise correlation and spatial autocorrelation (SPAC) results. Geophysical Journal International, 182(1), 454-460.
Yang, Y., & Ritzwoller, M. H. (2008). Characteristics of ambient seismic noise as a source for surface wave tomography. Geochemistry, Geophysics, Geosystems, 9(2).
Yang, Y., Ritzwoller, M. H., Levshin, A. L., & Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1), 259-274.
Yao, H., van Der Hilst, R. D., & Maarten, V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophysical Journal International, 166(2), 732-744.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53753-
dc.description.abstract周遭噪訊表面波層析成像是一個快速發展的地震學研究領域。這種方法相較于地震表面波層析成像有諸多優點。前人研究表明,均勻散射波場中兩個測站之間的格林函數可以經由計算兩個測站連續記錄的周遭噪訊時間序列的交互相關函數得到。格林函數可以揭示不同周期的表面波速度頻散,進而可以進行層析成像,解析地殼和上地幔的地質構造。
傳統周遭噪訊表面波相速度測量,是在時間域進行交互相關、叠加和測量。這個測量方法基于一個涉及遠場近似的理論推導,因此測站間距一般需要大于三倍波長。而本研究使用最早由Aki (1957)提出的基于交互相關函數頻率域的測量方法。該方法不受測站間距限制,因此在較短測站間距也可以提供可靠的長周期表面波相速度測量。
我們利用臺灣兩個地震觀測網38個測站2年的垂直分量連續記錄,在頻率域進行行交互相關計算、叠加和測量,得到不同測站之間的雷利波相速度頻散曲綫。經過資料篩選後,我們使用品質穩定的頻散曲綫,利用多重尺度有限參數法反演臺灣地區不同周期雷利波相速度構造。反演得到的速度模型與地質單元吻合。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T02:28:58Z (GMT). No. of bitstreams: 1
ntu-104-R01224115-1.pdf: 3076699 bytes, checksum: e4f8c985a5ab7a48e7722cd9a5a36004 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………… i
誌謝………………………………………………………………………………… ii
中文摘要…………………………………………………………………………… iii
英文摘要…………………………………………………………………………… iv
第一章 緒論………………………………………………………………………… 1
1.1周遭噪訊雷利波層析成像簡介…………………………………………… 1
1.2利用周遭噪訊測量測量雷利波波速的幾種方法………………………… 2
1.2.1利用周遭噪訊交互相關函數時間域測量雷利波群速度………… 3
1.2.2利用周遭噪訊交互相關函數時間域測量雷利波相速度………… 3
1.2.3利用周遭噪訊交互相關函數頻率域測量雷利波相速度………… 4
1.3研究區域及研究動機……………………………………………………… 5
第二章 理論原理…………………………………………………………………… 7
第三章 資料來源與資料處理流程……………………………………………… 10
3.1資料來源………………………………………………………………… 10
3.2資料處理流程…………………………………………………………… 10
3.2.1單站資料前置處理………………………………………………… 10
3.2.2計算各個測站對每天的交互相關函數…………………………… 14
3.2.3長時間叠加各個測站對交互相關函數頻率域實………………… 14
第四章 頻散測量與資料篩選…………………………………………………… 17
4.1頻散測量…………………………………………………………………… 17
4.2資料篩選…………………………………………………………………… 19
4.3與時間域測量結果的比較………………………………………………… 23
第五章 雷利波層析成像………………………………………………………… 24
5.1多重尺度有限參數法……………………………………………………… 24
5.2波徑覆蓋…………………………………………………………………… 25
5.3格點參數化………………………………………………………………… 26
5.4阻尼係數的選取…………………………………………………………… 28
5.5反演結果…………………………………………………………………… 31
第六章 結論……………………………………………………………………… 36
參考文獻…………………………………………………………………………… 37
dc.language.isozh-TW
dc.subject多重尺度有限參數法zh_TW
dc.subject周遭噪訊zh_TW
dc.subject雷利波相速度zh_TW
dc.subject頻散測量zh_TW
dc.subject表面波層析成像zh_TW
dc.subjectmultiscale parameterizationen
dc.subjectambient seismic noiseen
dc.subjectRayleigh wave phase velocityen
dc.subjectdispersion measurementen
dc.subjectsurface wave tomographyen
dc.title基于周遭噪訊和Aki頻譜公式測定臺灣地區雷利波相速度zh_TW
dc.titleDetermination of Rayleigh Wave Phase Velocity across Taiwan Using Ambient Seismic Noise and Aki’s Spectral Formulationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee喬凌雲,洪淑蕙
dc.subject.keyword周遭噪訊,雷利波相速度,頻散測量,表面波層析成像,多重尺度有限參數法,zh_TW
dc.subject.keywordambient seismic noise,Rayleigh wave phase velocity,dispersion measurement,surface wave tomography,multiscale parameterization,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2015-08-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved