Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳逸然(Yet-Ran Chen)
dc.contributor.authorYing-Lan Chenen
dc.contributor.author陳盈嵐zh_TW
dc.date.accessioned2021-06-16T02:28:49Z-
dc.date.available2020-08-03
dc.date.copyright2015-08-03
dc.date.issued2015
dc.date.submitted2015-08-03
dc.identifier.citation1. Kanno, Y. & Shiba, Y. [Intercellular communication in development]. Nihon Seirigaku Zasshi 47, 1-15 (1985).
2. White, C.E. & Winans, S.C. Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 362, 1135-1148 (2007).
3. Van Norman, J.M., Breakfield, N.W. & Benfey, P.N. Intercellular communication during plant development. Plant Cell 23, 855-864 (2011).
4. Lee, J.Y. New and old roles of plasmodesmata in immunity and parallels to tunneling nanotubes. Plant Sci 221-222, 13-20 (2014).
5. Zambryski, P. Plasmodesmata: plant channels for molecules on the move. Science 270, 1943-1944 (1995).
6. Knox, J.P. & Benitez-Alfonso, Y. Roles and regulation of plant cell walls surrounding plasmodesmata. Curr Opin Plant Biol 22, 93-100 (2014).
7. Marzec, M. & Kurczynska, E. Importance of symplasmic communication in cell differentiation. Plant Signal Behav 9, e27931 (2014).
8. Turgeon, R. Phloem unloading in tobacco sink leaves: insensitivity to anoxia indicates a symplastic pathway. Planta 171, 73-81 (1987).
9. Jachetta, J.J., Appleby, A.P. & Boersma, L. Apoplastic and symplastic pathways of atrazine and glyphosate transport in shoots of seedling sunflower. Plant Physiol 82, 1000-1007 (1986).
10. Ryan, C.A., Pearce, G., Scheer, J. & Moura, D.S. Polypeptide hormones. Plant Cell 14 Suppl, S251-264 (2002).
11. Boller, T. Peptide signalling in plant development and self/non-self perception. Curr Opin Cell Biol 17, 116-122 (2005).
12. Bisseling, T. The role of plant peptides in intercellular signalling. Curr Opin Plant Biol 2, 365-368 (1999).
13. Farrokhi, N., Whitelegge, J.P. & Brusslan, J.A. Plant peptides and peptidomics. Plant Biotechnol J 6, 105-134 (2008).
14. Butenko, M.A., Vie, A.K., Brembu, T., Aalen, R.B. & Bones, A.M. Plant peptides in signalling: looking for new partners. Trends in plant science 14, 255-263 (2009).
15. Initiative, T.A.G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 (2000).
16. Shiu, S.H. & Bleecker, A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530-543 (2003).
17. Meng, L. Roles of secreted peptides in intercellular communication and root development. Plant Sci 183, 106-114 (2012).
18. Lindsey, K., Casson, S. & Chilley, P. Peptides: new signalling molecules in plants. Trends in plant science 7, 78-83 (2002).
19. Murphy, E., Smith, S. & De Smet, I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24, 3198-3217 (2012).
20. Shinohara, H. & Matsubayashi, Y. Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure. Curr Opin Plant Biol 13, 515-519 (2010).
21. Yamaguchi, Y. & Huffaker, A. Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14, 351-357 (2011).
22. Marshall, E., Costa, L.M. & Gutierrez-Marcos, J. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 62, 1677-1686 (2011).
23. Murphy, E., Smith, S. & De Smet, I. Small Signaling Peptides in Arabidopsis Development: How Cells Communicate Over a Short Distance. Plant Cell 24, 3198-3217 (2012).
24. Shiu, S.H. & Bleecker, A.B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001, re22 (2001).
25. Torii, K.U. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234, 1-46 (2004).
26. Fiers, M. et al. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17, 2542-2553 (2005).
27. Muller, R., Borghi, L., Kwiatkowska, D., Laufs, P. & Simon, R. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18, 1188-1198 (2006).
28. Tucker, M.R. et al. Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135, 2839-2843 (2008).
29. Kondo, T. et al. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313, 845-848 (2006).
30. Amano, Y., Tsubouchi, H., Shinohara, H., Ogawa, M. & Matsubayashi, Y. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 104, 18333-18338 (2007).
31. Matsubayashi, Y. & Sakagami, Y. Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proceedings of the National Academy of Sciences of the United States of America 93, 7623-7627 (1996).
32. Mosher, S. et al. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant Journal 73, 469-482 (2013).
33. Haruta, M., Sabat, G., Stecker, K., Minkoff, B.B. & Sussman, M.R. A Peptide Hormone and Its Receptor Protein Kinase Regulate Plant Cell Expansion. Science 343, 408-411 (2014).
34. Pearce, G., Moura, D.S., Stratmann, J. & Ryan, C.A. Production of multiple plant hormones from a single polyprotein precursor. Nature 411, 817-820 (2001).
35. Srivastava, R., Liu, J.X., Guo, H.Q., Yin, Y.H. & Howell, S.H. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant Journal 59, 930-939 (2009).
36. Matos, J.L., Fiori, C.S., Silva-Filho, M.C. & Moura, D.S. A conserved dibasic site is essential for correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana. Febs Lett 582, 3343-3347 (2008).
37. Pearce, G., Strydom, D., Johnson, S. & Ryan, C.A. A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins. Science 253, 895-897 (1991).
38. Farmer, E.E. & Ryan, C.A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell 4, 129-134 (1992).
39. Li, L., Li, C., Lee, G.I. & Howe, G.A. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proceedings of the National Academy of Sciences of the United States of America 99, 6416-6421 (2002).
40. Sun, J.Q., Jiang, H.L. & Li, C.Y. Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4, 607-615 (2011).
41. Huffaker, A., Pearce, G. & Ryan, C.A. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 103, 10098-10103 (2006).
42. Pearce, G. & Ryan, C.A. Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278, 30044-30050 (2003).
43. Pearce, G., Siems, W.F., Bhattacharya, R., Chen, Y.C. & Ryan, C.A. Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. J Biol Chem 282, 17777-17784 (2007).
44. Chen, Y.C., Siems, W.F., Pearce, G. & Ryan, C.A. Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J Biol Chem 283, 11469-11476 (2008).
45. Pearce, G. et al. Isolation and characterization of hydroxyproline-rich glycopeptide signals in black nightshade leaves. Plant Physiol 150, 1422-1433 (2009).
46. Scheer, J.M. & Ryan, C.A. A 160-kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell 11, 1525-1535 (1999).
47. Yamaguchi, Y., Pearce, G. & Ryan, C.A. The cell surface leucine-rich repeat receptor for AtPep1, an endoaenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proceedings of the National Academy of Sciences of the United States of America 103, 10104-10109 (2006).
48. Huffaker, A. & Ryan, C.A. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proceedings of the National Academy of Sciences of the United States of America 104, 10732-10736 (2007).
49. A. P. Trivilin, S.H.a.M.G.M. Components of different signalling pathways regulated by a new orthologue of AtPROPEP1 in tomato following infection by pathogens. Plant Pathology (2014).
50. Wrzaczek, M. et al. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis. Embo J 34, 55-66 (2015).
51. Casson, S.A. et al. The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14, 1705-1721 (2002).
52. Butenko, M.A. et al. INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15, 2296-2307 (2003).
53. Narita, N.N. et al. Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant Journal 38, 699-713 (2004).
54. Wen, J.Q., Lease, K.A. & Walker, J.C. DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant Journal 37, 668-677 (2004).
55. Charon, C., Sousa, C., Crespi, M. & Kondorosi, A. Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant Cell 11, 1953-1965 (1999).
56. Rohrig, H., Schmidt, J., Miklashevichs, E., Schell, J. & John, M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proceedings of the National Academy of Sciences of the United States of America 99, 1915-1920 (2002).
57. Mergaert, P. et al. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology 132, 161-173 (2003).
58. Takayama, S. et al. The pollen determinant of self-incompatibility in Brassica campestris. Proceedings of the National Academy of Sciences of the United States of America 97, 1920-1925 (2000).
59. Takayama, S. et al. Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413, 534-538 (2001).
60. Sugano, S.S. et al. Stomagen positively regulates stomatal density in Arabidopsis. Nature 463, 241-244 (2010).
61. Ohyama, K., Ogawa, M. & Matsubayashi, Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant Journal 55, 152-160 (2008).
62. Tabata, R. et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343-346 (2014).
63. Grienenberger, E. & Fletcher, J.C. Polypeptide signaling molecules in plant development. Curr Opin Plant Biol 23, 8-14 (2015).
64. Schmelz, E.A. et al. Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences of the United States of America 103, 8894-8899 (2006).
65. Pearce, G., Yamaguchi, Y., Barona, G. & Ryan, C.A. A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. Proceedings of the National Academy of Sciences of the United States of America 107, 14921-14925 (2010).
66. Yamaguchi, Y., Barona, G., Ryan, C.A. & Pearce, G. GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes. Plant Physiol 156, 932-942 (2011).
67. Hou, S.G. et al. The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7. Plos Pathog 10 (2014).
68. Getz, G.S. Bridging the innate and adaptive immune systems. J Lipid Res 46, 619-622 (2005).
69. Miller, T.E. & Watson, D.W. Innate Immunity. Med Clin N Am 49, 1489-& (1965).
70. Good, R.A. & Papermaster, B.W. Ontogeny and Phylogeny of Adaptive Immunity. Adv Immunol 4, 1-115 (1964).
71. Vlot, A.C., Klessig, D.F. & Park, S.W. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11, 436-442 (2008).
72. Martin-Smith, M. & Khatoon, T. Biological Activity of the Terpenoids and Their Derivatives. Fortschr Arzneimittelforsch 5, 279-346 (1963).
73. Rodriguezgalvez, E. & Mendgen, K. Cell-Wall Synthesis in Cotton Roots after Infection with Fusarium-Oxysporum. Planta 197, 535-545 (1995).
74. Engleman, E.M. & Esau, K. The Problem of Callose Deposition in Phloem. Science 144, 562 (1964).
75. Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukocyte Biol 81, 1-5 (2007).
76. Boller, T. & Felix, G. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology 60, 379-406 (2009).
77. Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal 18, 277-284 (1999).
78. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. & Felix, G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465-476 (2006).
79. Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767 (2004).
80. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-1103 (2001).
81. Luna, E. et al. Callose Deposition: A Multifaceted Plant Defense Response. Mol Plant Microbe In 24, 183-193 (2011).
82. Yi, S.Y., Shirasu, K., Moon, J.S., Lee, S.G. & Kwon, S.Y. The Activated SA and JA Signaling Pathways Have an Influence on flg22-Triggered Oxidative Burst and Callose Deposition. PloS one 9 (2014).
83. Malinovsky, F.G., Fangel, J.U. & Willats, W.G. The role of the cell wall in plant immunity. Frontiers in plant science 5, 178 (2014).
84. Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406 (2009).
85. Savatin, D.V., Gramegna, G., Modesti, V. & Cervone, F. Wounding in the plant tissue: the defense of a dangerous passage. Frontiers in plant science 5, 470 (2014).
86. Orozco-Cardenas, M.L., Narvaez-Vasquez, J. & Ryan, C.A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13, 179-191 (2001).
87. Wasternack, C. et al. The wound response in tomato--role of jasmonic acid. J Plant Physiol 163, 297-306 (2006).
88. Chassot, C., Buchala, A., Schoonbeek, H.J., Metraux, J.P. & Lamotte, O. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J 55, 555-567 (2008).
89. Cheong, Y.H. et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129, 661-677 (2002).
90. Francia, D. et al. Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in cross-protection. Plant, cell & environment 30, 1357-1365 (2007).
91. Fu, Z.Q. & Dong, X.N. Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, Vol 64 64, 839-863 (2013).
92. Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S. & Van Wees, S.C.M. Networking by small-molecule hormones in plant immunity. Nature chemical biology 5, 308-316 (2009).
93. El Oirdi, M. et al. Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato. Plant Cell 23, 2405-2421 (2011).
94. Schaller, A. & Oecking, C. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11, 263-272 (1999).
95. Felix, G., Grosskopf, D.G., Regenass, M. & Boller, T. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proceedings of the National Academy of Sciences of the United States of America 88, 8831-8834 (1991).
96. Pearce, G., Moura, D.S., Stratmann, J. & Ryan, C.A., Jr. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proceedings of the National Academy of Sciences of the United States of America 98, 12843-12847 (2001).
97. Mallick, P. & Kuster, B. Proteomics: a pragmatic perspective. Nature biotechnology 28, 695-709 (2010).
98. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198-207 (2003).
99. Gygi, S.P. & Aebersold, R. Mass spectrometry and proteomics. Curr Opin Chem Biol 4, 489-494 (2000).
100. Schoofs, L. & Baggerman, G. Peptidomics in Drosophila melanogaster. Brief Funct Genomic Proteomic 2, 114-120 (2003).
101. Clynen, E., De Loof, A. & Schoofs, L. The use of peptidomics in endocrine research. Gen Comp Endocrinol 132, 1-9 (2003).
102. Yamaguchi, Y. & Huffaker, A. Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14, 351-357 (2011).
103. Kapp, E.A. et al. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5, 3475-3490 (2005).
104. Ding, Y., Choi, H. & Nesvizhskii, A.I. Adaptive discriminant function analysis and reranking of MS/MS database search results for improved peptide identification in shotgun proteomics. Journal of proteome research 7, 4878-4889 (2008).
105. Fricker, L.D., Lim, J., Pan, H. & Che, F.Y. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25, 327-344 (2006).
106. Svensson, M., Skold, K., Svenningsson, P. & Andren, P.E. Peptidomics-based discovery of novel neuropeptides. Journal of proteome research 2, 213-219 (2003).
107. Che, F.Y., Lim, J., Pan, H., Biswas, R. & Fricker, L.D. Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol Cell Proteomics 4, 1391-1405 (2005).
108. Tinoco, A.D. & Saghatelian, A. Investigating endogenous peptides and peptidases using peptidomics. Biochemistry 50, 7447-7461 (2011).
109. Sasaki, K., Satomi, Y., Takao, T. & Minamino, N. Snapshot peptidomics of the regulated secretory pathway. Mol Cell Proteomics 8, 1638-1647 (2009).
110. Schaller, A., Bergey, D.R. & Ryan, C.A. Induction of wound response genes in tomato leaves by bestatin, an inhibitor of aminopeptidases. Plant Cell 7, 1893-1898 (1995).
111. Howe, G.A., Lightner, J., Browse, J. & Ryan, C.A. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8, 2067-2077 (1996).
112. Chen, C.J., Chen, W.Y., Tseng, M.C. & Chen, Y.R. Tunnel Frit: A Nonmetallic In-Capillary Frit for Nanoflow Ultra High-Performance Liquid Chromatography-Mass Spectrometry Applications. Anal Chem 84, 297-303 (2012).
113. Pedrioli, P.G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nature biotechnology 22, 1459-1466 (2004).
114. Chang, W.H. et al. UniQua: A Universal Signal Processor for MS-Based Qualitative and Quantitative Proteomics Applications. Anal Chem 85, 890-897 (2013).
115. Pedrioli, P.G. Trans-proteomic pipeline: a pipeline for proteomic analysis. Methods in molecular biology 604, 213-238 (2010).
116. Pan, X., Welti, R. & Wang, X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature protocols 5, 986-992 (2010).
117. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676 (2005).
118. Du, Z., Zhou, X., Ling, Y., Zhang, Z. & Su, Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic acids research 38, W64-70 (2010).
119. Zimmerli, L., Jakab, G., Metraux, J.P. & Mauch-Mani, B. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America 97, 12920-12925 (2000).
120. Zhou, A., Webb, G., Zhu, X. & Steiner, D.F. Proteolytic processing in the secretory pathway. J Biol Chem 274, 20745-20748 (1999).
121. Farrokhi, N., Whitelegge, J.P. & Brusslan, J.A. Plant peptides and peptidomics. Plant Biotechnology Journal 6, 105-134 (2008).
122. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature methods 4, 207-214 (2007).
123. Gibbs, G.M., Roelants, K. & O'Bryan, M.K. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocrine reviews 29, 865-897 (2008).
124. Heath, M.C. Hypersensitive response-related death. Plant Molecular Biology 44, 321-334 (2000).
125. Fei, Z. et al. Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic acids research 39, D1156-1163 (2011).
126. Rosli, H.G. et al. Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome biology 14, R139 (2013).
127. Tamura, K. et al. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28, 2731-2739 (2011).
128. Li, C. et al. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15, 1646-1661 (2003).
129. Stratmann, J.W. Long distance run in the wound response--jasmonic acid is pulling ahead. Trends in plant science 8, 247-250 (2003).
130. Doke, N. et al. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence--a review. Gene 179, 45-51 (1996).
131. Lamb, C. & Dixon, R.A. The oxidative burst in plant disease resistance. Annu Rev Plant Phys 48, 251-275 (1997).
132. Orozco-Cardenas, M. & Ryan, C.A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America 96, 6553-6557 (1999).
133. Robert-Seilaniantz, A., Grant, M. & Jones, J.D.G. Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annu Rev Phytopathol 49, 317-343 (2011).
134. Thaler, J.S., Humphrey, P.T. & Whiteman, N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends in plant science 17, 260-270 (2012).
135. Xiao, F.M. et al. The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. Plant Journal 52, 595-614 (2007).
136. Son, G.H. et al. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Molecular plant-microbe interactions : MPMI 25, 48-60 (2012).
137. Moffat, C.S. et al. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PloS one 7, e35995 (2012).
138. Li, C.W. et al. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol 156, 213-227 (2011).
139. Devarenne, T.P., Ekengren, S.K., Pedley, K.F. & Martin, G.B. Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. Embo J 25, 255-265 (2006).
140. Ek-Ramos, M.J., Avila, J., Cheng, C., Martin, G.B. & Devarenne, T.P. The T-loop extension of the tomato protein kinase AvrPto-dependent Pto-interacting protein 3 (Adi3) directs nuclear localization for suppression of plant cell death. J Biol Chem 285, 17584-17594 (2010).
141. Ek-Ramos, M.J., Avila, J., Cheng, C., Martin, G.B. & Devarenne, T.P. The T-loop Extension of the Tomato Protein Kinase AvrPto-dependent Pto-interacting Protein 3 (Adi3) Directs Nuclear Localization for Suppression of Plant Cell Death. Journal of Biological Chemistry 285, 17584-17594 (2010).
142. Yu, I.C., Parker, J. & Bent, A.F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proceedings of the National Academy of Sciences of the United States of America 95, 7819-7824 (1998).
143. Vera, P., Hernandezyago, J. & Conejero, V. Pathogenesis-Related P1(P14) Protein - Vacuolar and Apoplastic Localization in Leaf Tissue from Tomato Plants Infected with Citrus Exocortis Viroid - Invitro Synthesis and Processing. J Gen Virol 70, 1933-1942 (1989).
144. Schaller, A. & Oecking, C. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11, 263-272 (1999).
145. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S. & Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nature chemical biology 5, 308-316 (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53746-
dc.description.abstract訊息胜肽已知在多細胞生物體內扮演一重要調節者,其可透過細胞間溝通去調控生物體內之多樣化生理反應。然而植物目前被發現之訊息胜肽數量相當有限,主要原因為植物內生性訊息胜肽通常在植物體內含量很低並且需要經過特定蛋白酶酵素的活化才能從前驅蛋白上被切出來,尤其是防禦功能相關之胜肽。所以,找尋此類防禦性胜肽需使用大量的植物組織且胜肽的偵測被侷限在特定生物活性試驗之選擇。為了克服偵測訊息胜肽的種種困難,我們在此研究中建立了一個高通量定量胜肽體學方法來找尋更多新的植物防禦性訊息胜肽。此方法結合了我們自製序列資料庫來進行內生性胜肽序列鑑定並且利用質譜定量方法來搜尋在植物受傷後可能被誘導的防禦性胜肽。在此研究中除了已知的受傷訊息胜肽systemin之外,同時也在番茄葉中找到數個新發現的受傷誘導胜肽。其中一個被鑑定出的新胜肽為植物當中免疫指標蛋白PR-1所衍生出之胜肽片段,PR-1又屬於CAP蛋白家族一員,所以我們稱此胜肽為CAP-derived peptide 1 (CAPE1)。此胜肽被進一步確認為僅在受傷後的番茄葉中大量表現並且可調控番茄的免疫反應產生抗病及抗蟲之效果。此研究提出一個有效率的方法找尋植物內生性防禦胜肽,並且首次證明未知功能蛋白PR-1在免疫訊息傳遞上所扮演的角色。除此之外,PR-1在其他生物也具有高度保留性,我們測試在阿拉伯芥中預測之PR-1衍生胜肽也同樣具有生物活性,此結果顯示此胜肽將可以廣泛應用於增強不同植物抗性以對抗各種外來環境壓力。zh_TW
dc.description.abstractSignaling peptide is known to be an important mediator for cell-cell communications to regulate the diverse physiological responses in multicellular organisms. However, in plants, only a limited number of signaling peptides have been identified. This may due to the plant bioactive peptides are low abundant and dynamically derived from precursor by activation of protease, especially for defense functions. Thus, the most plant defense signaling peptides were identified by using a large quantity of plant tissues for peptide discovery and the peptide detection was limited by the selection of bioassay. In an attempt to overcome the challenges in identifying plant signaling peptides, we developed a high-throughput quantitative peptidomics approach for the discovery of novel defense signaling peptide. This approach integrated the hypothetical peptide database and a quantitative MS approach to profile and discover wound-induced defense signaling peptides in plants. In addition to the canonical peptide systemin, several novel wound-induced peptides were confidently identified and quantified in Solanum lycopersicum (tomato). One of novel wound-induced peptides was derived from the pathogenesis-related 1 protein (PR-1) of CAP superfamily, termed as CAP-derived peptide 1 (CAPE1). This peptide was further confirmed to be significantly induced by wounding and found to trigger immune response for both antipathogen and antiherbivore activities in tomato. This study is not only proposed an efficient way to detect defense signaling peptide in plants but also highlights a new role for PR-1 in immune signaling. As PR-1 is highly conserved across many organisms and the putative peptide from AtPR1 was also found to be bioactive in Arabidopsis, our results suggest that the homologues peptides of CAPE1 may be useful for enhancing resistance to various stresses in other plant species.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:28:49Z (GMT). No. of bitstreams: 1
ntu-104-D98b42009-1.pdf: 4765528 bytes, checksum: 49df9e3870401652426eafbf2b42a4c9 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 3
ABSTRACT 4
ABBREVIATIONS 6
CHAPTER 1: INTRODUCTION 8
1-1 SIGNIFICANCE OF INTERCELLULAR COMMUNICATION IN PLANTS 8
1-1.1 Types of Intercellular Communication in Plants 8
1-1.2 Signaling Molecules for Intercellular Communications 9
1-1.3 Importance of Plant Signaling Peptides in Cell-Cell Communications 10
1-1.3.1 Plant Signaling Peptide in Development 11
1-1.3.2 Plant Signaling Peptide in Defense Signaling 14
1-1.3.3 Overview of the Signaling Peptides Discovery in Plants 17
1-2 PLANT IMMUNE SYSTEM 18
1-2.1 Pathogen-associated Molecular Patterns (PAMPs) and Damage-associated Molecular Patterns (DAMPs) triggered Immunity 19
1-2.2 Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR) 21
1-3 CONVENTIONAL STRATEGY FOR THE DISCOVERY OF DEFENSE SIGNALING PEPTIDE IN PLANT 22
1-4 OVERVIEW OF PLANT DEFENSE SIGNALING PEPTIDE DISCOVERY STRATEGY 24
1-5 POTENTIAL FOR THE DEVELOPMENT OF HIGH-THROUGHPUT PLATFORM FOR THE DEFENSE SIGNALING PEPTIDE DISCOVERY USING MASS SPECTROMETRY 25
1-6 MOTIVATION AND SPECIFIC AIMS 26
CHAPTER 2: EXPERIMENTAL SECTION 28
2-1 MATERIALS 28
2-1.1 Chemicals, Standards and Enzymes 28
2-1.2 Plant Materials and Growth Conditions 29
2-2 METHODS FOR PLANT SIGNALING PEPTIDES DISCOVERY 30
2-2.1 Plant Treatments 30
2-2.2 Endogenous Peptide Extraction 32
2-2.3 Endogenous Peptide Profiling using LC-MS/MS 33
2-2.4 Setup of Hypothetical and Decoy Database 34
2-2.5 Endogenous Peptide Identification and Quantitation 35
2-2.6 Targeted Peptide Quantitation using LC-MS/MS 36
2-3 DETECTION OF PEPTIDE-TRIGGERED PHYTOHORMONE LEVELS 36
2-3.1 Phytohormone Extraction 36
2-3.2 Phytohormone Quantitation using LC-MS/MS 37
2-4 CDNA MICROARRAY AND QUANTITATIVE REAL TIME PCR (QRT-PCR) 38
2-5 IN VIVO DETECTION OF H2O2 40
2-6 HERBIVORY TREATMENTS FOR ANTIHERBIVORE ACTIVITY TEST 40
2-7 PATHOGEN GROWTH AND CHALLENGES FOR ANTIPATHOGEN ACTIVITY TEST 41
2-8 ACCESSION NUMBERS OF GENES AND PROTEINS 41
CHAPTER 3: RESULTS AND DISCUSSION 43
3-1 PLATFORM FOR THE DISCOVERY OF DEFENSE-RELATED PEPTIDES 43
3-2 IDENTIFICATION OF WOUND-INDUCED PEPTIDES IN TOMATO LEAVES 45
3-3 BIOACTIVITY OF CAPE1 47
3-4 CAPE1 PROPROTEIN AND CONSERVED MOTIF 50
3-5 DISCUSSION 51
CHAPTER 4: CONCLUSION AND FUTURE PERSPECTIVES 57
ACKNOWLEDGEMENTS 60
REFERENCE 61
FIGURE LEGENDS 72
SUPPLEMENTAL FIGURE LEGENDS 87
dc.language.isoen
dc.subject受傷反應zh_TW
dc.subject質譜分析平台zh_TW
dc.subject胜?質體學zh_TW
dc.subject免疫調控胜?zh_TW
dc.subject植物免疫反應zh_TW
dc.subject訊息胜?zh_TW
dc.subject番茄zh_TW
dc.subjectflg22en
dc.subjectplant immune responseen
dc.subjectsignaling peptideen
dc.subjecttomatoen
dc.subjectwound responseen
dc.subjectMS analysisen
dc.subjectpeptidomicsen
dc.subjectCAPE1en
dc.subjectsysteminen
dc.title以高效質譜分析平台研究植物免疫調控胜肽並探討相對應之訊息傳遞機制zh_TW
dc.titleStudy of Plant Immune Regulatory Peptides and Corresponding Signaling Mechanisms using High-Throughput MS-Based Approachen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.coadvisor鄭秋萍
dc.contributor.oralexamcommittee何國榮,黃榮南,葉信宏
dc.subject.keyword植物免疫反應,訊息胜?,番茄,受傷反應,質譜分析平台,胜?質體學,免疫調控胜?,zh_TW
dc.subject.keywordplant immune response,signaling peptide,tomato,wound response,MS analysis,peptidomics,CAPE1,systemin,flg22,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2015-08-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved